Covering an uncountable square by countably many continuous functions

Wiesław Kubiś

Instytut Matematyki Akademia Świętokrzyska Kielce, POLAND http://www.pu.kielce.pl/~wkubis/

Measure Theory Edward Marczewski Centennial Conference Będlewo, 9–15 September 2007

1/14

3 > < 3 >

Theorem (Sierpiński)

Let *S* be a set of cardinality \aleph_1 . Then there exists a sequence of functions $\{f_n : S \to S\}_{n \in \omega}$, such that

$$S \times S = \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

- We assume that $S = \omega_1$.
- For each $\beta \in S$ fix a surjection $g_{\beta} \colon \omega \to \beta + 1$.
- Define $f_n(\beta) = g_\beta(n)$.

2/14

Theorem (Sierpiński)

Let *S* be a set of cardinality \aleph_1 . Then there exists a sequence of functions $\{f_n : S \to S\}_{n \in \omega}$, such that

$$S \times S = \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

- We assume that $S = \omega_1$.
- For each $\beta \in S$ fix a surjection $g_{\beta} \colon \omega \to \beta + 1$.
- Define $f_n(\beta) = g_\beta(n)$.

2/14

Theorem (Sierpiński)

Let *S* be a set of cardinality \aleph_1 . Then there exists a sequence of functions $\{f_n : S \to S\}_{n \in \omega}$, such that

$$S \times S = \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

- We assume that $S = \omega_1$.
- For each $\beta \in S$ fix a surjection $g_{\beta} \colon \omega \to \beta + 1$.
- Define $f_n(\beta) = g_\beta(n)$.

2/14

Theorem (Sierpiński)

Let *S* be a set of cardinality \aleph_1 . Then there exists a sequence of functions $\{f_n : S \to S\}_{n \in \omega}$, such that

$$S \times S = \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

- We assume that $S = \omega_1$.
- For each $\beta \in S$ fix a surjection $g_{\beta} \colon \omega \to \beta + 1$.
- Define $f_n(\beta) = g_\beta(n)$.

2/14

Theorem (Sierpiński)

Let *S* be a set of cardinality \aleph_1 . Then there exists a sequence of functions $\{f_n : S \to S\}_{n \in \omega}$, such that

$$S \times S = \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

- We assume that $S = \omega_1$.
- For each $\beta \in S$ fix a surjection $g_{\beta} \colon \omega \to \beta + 1$.
- Define $f_n(\beta) = g_\beta(n)$.

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

< 回 > < 回 > < 回 >

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

• Fix $A \in [S]^{\aleph_1}$.

- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

< 回 > < 回 > < 回 >

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

< 回 > < 回 > < 回 >

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

If *S* has the above property then $|S| \leq \aleph_1$.

Proof.

- Fix $A \in [S]^{\aleph_1}$.
- For each $x \in A$ let $F_x = \{f_n(x) : n \in \omega\}$.
- The set $\bigcup_{x \in A} F_x$ has cardinality $\leq \aleph_1$.
- Suppose $p \in S$ is such that $p \notin F_x$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a = f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

3/14

< 回 > < 回 > < 回 >

Is it possible that the square of some uncountable subset of \mathbb{R} is covered by countably many continuous real functions and their inverses?

In other words:

Question

Does there exist a family $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ consisting of continuous functions such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some $S \in [\mathbb{R}]^{\aleph_1}$?

< 回 > < 回 > < 回 >

Is it possible that the square of some uncountable subset of \mathbb{R} is covered by countably many continuous real functions and their inverses?

In other words:

Question

Does there exist a family $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ consisting of continuous functions such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some $S \in [\mathbb{R}]^{\aleph_1}$?

(1)
(1)
(2)
(2)
(3)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)

Is it possible that the square of some uncountable subset of \mathbb{R} is covered by countably many continuous real functions and their inverses?

In other words:

Question

Does there exist a family $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ consisting of continuous functions such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some $S \in [\mathbb{R}]^{\aleph_1}$?

4 10 1 4 10 1

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each $f_n \colon S \to S$ is a non-decreasing function.
- Then both f_n and f_n^{-1} are chains in $S \times S$.
- Thus, if $|S| > \aleph_0$ then S is a Countryman type!

5/14

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each $f_n \colon S \to S$ is a non-decreasing function.
- Then both f_n and f_n^{-1} are chains in $S \times S$.
- Thus, if $|S| > \aleph_0$ then S is a Countryman type!

5/14

< 回 > < 回 > < 回 >

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each $f_n \colon S \to S$ is a non-decreasing function.
- Then both f_n and f_n^{-1} are chains in $S \times S$.
- Thus, if $|S| > \aleph_0$ then S is a Countryman type!

5/14

不得る 不良る 不良る

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each $f_n \colon S \to S$ is a non-decreasing function.
- Then both f_n and f_n^{-1} are chains in $S \times S$.
- Thus, if $|S| > \aleph_0$ then S is a Countryman type!

- A TE N - A TE N

There exists a compact line K and a family $\{f_n \colon K \to K\}_{n \in \omega}$ consisting of continuous non-decreasing functions such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq K$.

There exists a compact line K and a family $\{f_n \colon K \to K\}_{n \in \omega}$ consisting of continuous non-decreasing functions such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq K$.

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^2$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not\subseteq A$ whenever $X, Y \in [\mathbb{R}]^{\aleph_2}$.
- $X \times Y \not\subseteq A$ whenever X, Y are perfect subsets of \mathbb{R} .

Question

Is it possible that $A = \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each f_n is a continuous real function?

7/14

< 回 > < 回 > < 回 >

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^2$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not\subseteq A$ whenever $X, Y \in [\mathbb{R}]^{\aleph_2}$.
- $X \times Y \not\subseteq A$ whenever X, Y are perfect subsets of \mathbb{R} .

Question

Is it possible that $A = \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each f_n is a continuous real function?

7/14

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^2$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not\subseteq A$ whenever $X, Y \in [\mathbb{R}]^{\aleph_2}$.
- $X \times Y \not\subseteq A$ whenever X, Y are perfect subsets of \mathbb{R} .

Question

Is it possible that $A = \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each f_n is a continuous real function?

7/14

A (10) A (10)

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^2$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not\subseteq A$ whenever $X, Y \in [\mathbb{R}]^{\aleph_2}$.
- $X \times Y \not\subseteq A$ whenever X, Y are perfect subsets of \mathbb{R} .

Question

Is it possible that $A = \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each f_n is a continuous real function?

7/14

A (10) A (10)

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^2$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not\subseteq A$ whenever $X, Y \in [\mathbb{R}]^{\aleph_2}$.
- $X \times Y \not\subseteq A$ whenever X, Y are perfect subsets of \mathbb{R} .

Question

Is it possible that $A = \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each f_n is a continuous real function?

7/14

< 回 > < 回 > < 回 >

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^2$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not\subseteq A$ whenever $X, Y \in [\mathbb{R}]^{\aleph_2}$.
- $X \times Y \not\subseteq A$ whenever X, Y are perfect subsets of \mathbb{R} .

Question

Is it possible that $A = \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$, where each f_n is a continuous real function?

A B F A B F

Assume $\{f_n \colon S \to S\}_{n \in \omega}$ and A, B are uncountable sets such that

 $A \times B \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

Then $|A| = |B| = \aleph_1$.

Proposition

Let $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ be a family of continuous functions. Then there are no perfect sets P, Q such that

 $P \times Q \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

8/14

Assume $\{f_n \colon S \to S\}_{n \in \omega}$ and A, B are uncountable sets such that

$$A \times B \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Then $|A| = |B| = \aleph_1$.

Proposition

Let $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ be a family of continuous functions. Then there are no perfect sets P, Q such that

 $P \times Q \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

8/14

< 日 > < 同 > < 回 > < 回 > < □ > <

Assume $\{f_n : S \to S\}_{n \in \omega}$ and A, B are uncountable sets such that

$$A \times B \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Then $|A| = |B| = \aleph_1$.

Proposition

Let $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ be a family of continuous functions. Then there are no perfect sets P, Q such that

 $P \times Q \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

8/14

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Assume $\{f_n \colon S \to S\}_{n \in \omega}$ and A, B are uncountable sets such that

$$A \times B \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Then $|A| = |B| = \aleph_1$.

Proposition

Let $\{f_n : \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ be a family of continuous functions. Then there are no perfect sets P, Q such that

 $P \times Q \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

8/14

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Assume $\{f_n : S \to S\}_{n \in \omega}$ and A, B are uncountable sets such that

$$A \times B \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Then $|A| = |B| = \aleph_1$.

Proposition

Let $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ be a family of continuous functions. Then there are no perfect sets P, Q such that

$$P \times Q \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

8/14

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $\mathcal{S}\subseteq \mathsf{2}^\omega$.

$$p \in \mathbb{P}$$
 iff $p = \langle n^p, s^p, v^p, f^p, \gamma^p, \varrho^p \rangle$, where

(1)
$$n^{p} \in \omega, s^{p} \in [\omega]^{<\omega}$$
 and $v^{p} \in [\omega_{1}]^{<\omega}$;

(2)
$$f^p = \{f_i^p\}_{i \in s^p} \subseteq \operatorname{Lip}_1(2^{n^p}, 2^{n^p}) \text{ and } \varrho^p \colon [v^p]^2 \to s^p;$$

- (3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;
- (4) $\gamma^{p}(\alpha) = f^{p}_{\rho^{p}(\alpha,\beta)}(\gamma^{p}(\beta))$ whenever $\alpha < \beta$ and $\alpha, \beta \in v^{p}$.

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $\mathcal{S}\subseteq \mathsf{2}^\omega$.

$$p \in \mathbb{P}$$
 iff $p = \langle n^p, s^p, v^p, f^p, \gamma^p, \varrho^p \rangle$, where

(1)
$$n^{p} \in \omega, s^{p} \in [\omega]^{<\omega}$$
 and $v^{p} \in [\omega_{1}]^{<\omega}$;

(2)
$$f^p = \{f_i^p\}_{i \in s^p} \subseteq \operatorname{Lip}_1(2^{n^p}, 2^{n^p}) \text{ and } \varrho^p \colon [v^p]^2 \to s^p;$$

- (3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;
- (4) $\gamma^{p}(\alpha) = f^{p}_{\rho^{p}(\alpha,\beta)}(\gamma^{p}(\beta))$ whenever $\alpha < \beta$ and $\alpha, \beta \in v^{p}$.

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

$$p \in \mathbb{P}$$
 iff $p = \langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p} \rangle$, where

(1)
$$n^{p} \in \omega, s^{p} \in [\omega]^{<\omega}$$
 and $v^{p} \in [\omega_{1}]^{<\omega}$;

(2)
$$f^p = \{f_i^p\}_{i \in s^p} \subseteq \operatorname{Lip}_1(2^{n^p}, 2^{n^p}) \text{ and } \varrho^p \colon [v^p]^2 \to s^p;$$

- (3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;
- (4) $\gamma^{p}(\alpha) = f^{p}_{\rho^{p}(\alpha,\beta)}(\gamma^{p}(\beta))$ whenever $\alpha < \beta$ and $\alpha, \beta \in v^{p}$.

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

$$p \in \mathbb{P} \text{ iff } p = \langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p} \rangle, \text{ where}$$

$$(1) \quad n^{p} \in \omega, s^{p} \in [\omega]^{<\omega} \text{ and } v^{p} \in [\omega_{1}]^{<\omega};$$

$$(2) \quad f^{p} = \{f_{i}^{p}\}_{i \in s^{p}} \subseteq \text{Lip}_{1}(2^{n^{p}}, 2^{n^{p}}) \text{ and } \varrho^{p} \colon [v^{p}]^{2} \to s^{p};$$

$$(3) \quad \gamma^{p} \colon v^{p} \to 2^{n^{p}} \text{ is one-to-one};$$

$$(4) \quad \gamma^{p}(\alpha) = f_{\varrho^{p}(\alpha,\beta)}^{p}(\gamma^{p}(\beta)) \text{ whenever } \alpha < \beta \text{ and } \alpha, \beta \in v^{p}.$$

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

The forcing:

$$p \in \mathbb{P}$$
 iff $p = \langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}
angle$, where

(1) $n^p \in \omega, s^p \in [\omega]^{<\omega}$ and $v^p \in [\omega_1]^{<\omega}$

(2)
$$f^p = \{f_i^p\}_{i \in s^p} \subseteq \operatorname{Lip}_1(2^{n^p}, 2^{n^p}) \text{ and } \varrho^p \colon [v^p]^2 \to s^p;$$

(3) $\gamma^{\rho}: v^{\rho} \rightarrow 2^{n^{\rho}}$ is one-to-one;

(4) $\gamma^{p}(\alpha) = f^{p}_{\rho^{p}(\alpha,\beta)}(\gamma^{p}(\beta))$ whenever $\alpha < \beta$ and $\alpha, \beta \in v^{p}$.

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

The forcing:

$$oldsymbol{
ho}\in\mathbb{P}$$
 iff $oldsymbol{
ho}=\langle n^{oldsymbol{
ho}},s^{oldsymbol{
ho}},v^{oldsymbol{
ho}},f^{oldsymbol{
ho}},\gamma^{oldsymbol{
ho}},arrho^{oldsymbol{
ho}}
angle$, where

(1)
$$n^{p} \in \omega, s^{p} \in [\omega]^{<\omega}$$
 and $v^{p} \in [\omega_{1}]^{<\omega}$;

(2)
$$f^p = \{f_i^p\}_{i \in s^p} \subseteq \operatorname{Lip}_1(2^{n^p}, 2^{n^p}) \text{ and } \varrho^p \colon [v^p]^2 \to s^p;$$

(3)
$$\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$$
 is one-to-one;

(4) $\gamma^{p}(\alpha) = f^{p}_{\rho^{p}(\alpha,\beta)}(\gamma^{p}(\beta))$ whenever $\alpha < \beta$ and $\alpha, \beta \in v^{p}$.

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

$$p \in \mathbb{P} \text{ iff } p = \langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p} \rangle, \text{ where}$$

$$(1) \quad n^{p} \in \omega, s^{p} \in [\omega]^{<\omega} \text{ and } v^{p} \in [\omega_{1}]^{<\omega};$$

$$(2) \quad f^{p} = \{f_{i}^{p}\}_{i \in s^{p}} \subseteq \text{Lip}_{1}(2^{n^{p}}, 2^{n^{p}}) \text{ and } \varrho^{p} \colon [v^{p}]^{2} \to s^{p};$$

$$(3) \quad \gamma^{p} \colon v^{p} \to 2^{n^{p}} \text{ is one-to-one};$$

$$(4) \quad \gamma^{p}(\alpha) = f^{p}, \qquad (\gamma^{p}(\beta)) \text{ whenever } \alpha < \beta \text{ and } \alpha, \beta \in v^{p}$$

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

$$p \in \mathbb{P} \text{ iff } p = \langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p} \rangle, \text{ where}$$

$$(1) \quad n^{p} \in \omega, s^{p} \in [\omega]^{<\omega} \text{ and } v^{p} \in [\omega_{1}]^{<\omega};$$

$$(2) \quad f^{p} = \{f_{i}^{p}\}_{i \in s^{p}} \subseteq \text{Lip}_{1}(2^{n^{p}}, 2^{n^{p}}) \text{ and } \varrho^{p} \colon [v^{p}]^{2} \to s^{p};$$

$$(3) \quad \gamma^{p} \colon v^{p} \to 2^{n^{p}} \text{ is one-to-one};$$

$$(4) \quad \gamma^{p}(\alpha) = f_{\varrho^{p}(\alpha,\beta)}^{p}(\gamma^{p}(\beta)) \text{ whenever } \alpha < \beta \text{ and } \alpha, \beta \in v^{p}.$$

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \rightarrow 2^{\omega}\}_{n \in \omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$$

for some uncountable set $S \subseteq 2^{\omega}$.

$$p \in \mathbb{P} \text{ iff } p = \langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p} \rangle, \text{ where}$$

$$(1) \quad n^{p} \in \omega, s^{p} \in [\omega]^{<\omega} \text{ and } v^{p} \in [\omega_{1}]^{<\omega};$$

$$(2) \quad f^{p} = \{f_{i}^{p}\}_{i \in s^{p}} \subseteq \text{Lip}_{1}(2^{n^{p}}, 2^{n^{p}}) \text{ and } \varrho^{p} \colon [v^{p}]^{2} \to s^{p};$$

$$(3) \quad \gamma^{p} \colon v^{p} \to 2^{n^{p}} \text{ is one-to-one};$$

$$(4) \quad \gamma^{p}(\alpha) = f_{\varrho^{p}(\alpha,\beta)}^{p}(\gamma^{p}(\beta)) \text{ whenever } \alpha < \beta \text{ and } \alpha, \beta \in v^{p}.$$

Theorem (ZFC)

There exist a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

By Keisler's absoluteness theorem [2] for the language $L_{\omega_1,\omega}(Q)$.

Theorem (ZFC)

There exist an \aleph_1 -dense set $X \subseteq \mathbb{R}$ and a family of continuous functions $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ such that $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$.

10/14

Theorem (ZFC)

There exist a family of 1-Lipschitz functions $\{f_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

By Keisler's absoluteness theorem [2] for the language $L_{\omega_1,\omega}(Q)$.

Theorem (ZFC)

There exist an \aleph_1 -dense set $X \subseteq \mathbb{R}$ and a family of continuous functions $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ such that $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$.

10/14

Theorem (ZFC)

There exist a family of 1-Lipschitz functions $\{f_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

By Keisler's absoluteness theorem [2] for the language $L_{\omega_1,\omega}(Q)$.

Theorem (ZFC)

There exist an \aleph_1 -dense set $X \subseteq \mathbb{R}$ and a family of continuous functions $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ such that $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$.

10/14

Theorem (ZFC)

There exist a family of 1-Lipschitz functions $\{f_n: 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$S \times S \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$$

Proof.

By Keisler's absoluteness theorem [2] for the language $L_{\omega_1,\omega}(Q)$.

Theorem (ZFC)

There exist an \aleph_1 -dense set $X \subseteq \mathbb{R}$ and a family of continuous functions $\{f_n \colon \mathbb{R} \to \mathbb{R}\}_{n \in \omega}$ such that $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1})$.

Corollary

It is relatively consistent with ZFC that for every set $X \in [\mathbb{R}]^{\aleph_1}$ there exists a sequence of continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}$ with $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

Proof.

This holds in Baumgartner's model [1] in which every two \aleph_1 -dense subsets of \mathbb{R} are order isomorphic.

Corollary

It is relatively consistent with ZFC that for every set $X \in [\mathbb{R}]^{\aleph_1}$ there exists a sequence of continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}$ with $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

Proof.

This holds in Baumgartner's model [1] in which every two \aleph_1 -dense subsets of \mathbb{R} are order isomorphic.

伺 ト イヨ ト イヨ ト

Corollary

It is relatively consistent with ZFC that for every set $X \in [\mathbb{R}]^{\aleph_1}$ there exists a sequence of continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}$ with $X \times X \subseteq \bigcup_{n \in \omega} (f_n \cup f_n^{-1}).$

Proof.

This holds in Baumgartner's model [1] in which every two \aleph_1 -dense subsets of \mathbb{R} are order isomorphic.

There exists a family of continuous functions $\{u_n : 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, l: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n \in \omega}$ uniquely.

< ロ > < 同 > < 回 > < 回 >

There exists a family of continuous functions $\{u_n : 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, ℓ: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

② Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n\in\omega}$ uniquely.

12/14

There exists a family of continuous functions $\{u_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, l: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

2 Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n\in\omega}$ uniquely.

12/14

There exists a family of continuous functions $\{u_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, ℓ: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

2 Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n\in\omega}$ uniquely.

12/14

There exists a family of continuous functions $\{u_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, ℓ: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

2 Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n\in\omega}$ uniquely.

12/14

< ロ > < 同 > < 回 > < 回 >

There exists a family of continuous functions $\{u_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, ℓ: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$.

2 Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n\in\omega}$ uniquely.

12/14

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There exists a family of continuous functions $\{u_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, ℓ: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n\in\omega}$ uniquely.

12/14

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There exists a family of continuous functions $\{u_n \colon 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following properties:

For every family {g_n: 2^ω → 2^ω}_{n∈ω} consisting of continuous functions, there exist quotient maps k: 2^ω → 2^ω, ℓ: 2^ω → 2^ω and an injection ψ: ω → ω such that the diagram

commutes for every $n \in \omega$ *.*

2 Some sort of homogeneity.

The above properties describe the family $\{u_n\}_{n \in \omega}$ uniquely.

12/14

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\{u_n\}_{n\in\omega}$ be the universal homogeneous family of functions from the previous theorem. Then

$$X^2 \subseteq \bigcup_{n \in \omega} (u_n \cup u_n^{-1})$$

for some uncountable set $X \subseteq 2^{\omega}$.

э

< 回 > < 回 > < 回 >

Let $\{u_n\}_{n\in\omega}$ be the universal homogeneous family of functions from the previous theorem. Then

$$X^2 \subseteq \bigcup_{n \in \omega} (u_n \cup u_n^{-1})$$

for some uncountable set $X \subseteq 2^{\omega}$.

References

- J. BAUMGARTNER, *All* ℵ₁-*dense sets of reals can be isomorphic*, Fund. Math. **79** (1973) 101–106.
- J. KEISLER, *Logic with quantifier "there exists uncountably many*", Annals of Mathematical Logic **1** (1970) 1–93.
- W. KUBIŚ, S. SHELAH Analytic colorings, Ann. Pure Appl. Logic 121 (2003) 145–161.
- K. KURATOWSKI, Sur une caractérisation des alephs, Fund. Math.
 38 (1951) 14–17.
- S. SHELAH, *Borel sets with large squares*, Fund. Math. **159** (1999) 1–50.

くぼう くほう くほう