Covering an uncountable square by countably many continuous functions

Wiesław Kubiś

Instytut Matematyki
Akademia Świȩtokrzyska
Kielce, POLAND
http://www.pu.kielce.pl/~wkubis/
Measure Theory
Edward Marczewski Centennial Conference Bȩdlewo, 9-15 September 2007

Motivations

Theorem (Sierpiński)

Let S be a set of cardinality \aleph_{1}. Then there exists a sequence of functions $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$, such that

$$
S \times S=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

- We assume that $S=\omega_{1}$.
- For each $\beta \in S$ fix a surjection $g_{\beta}: \omega \rightarrow \beta+1$.
- Define $f_{n}(\beta)=g_{\beta}(n)$.

Motivations

Theorem (Sierpiński)

Let S be a set of cardinality \aleph_{1}. Then there exists a sequence of functions $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$, such that

$$
S \times S=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

- We assume that $S=\omega_{1}$.
- For each $\beta \in S$ fix a surjection $g_{\beta}: \omega \rightarrow \beta+1$.
- Define $f_{n}(\beta)=g_{\beta}(n)$.

Motivations

Theorem (Sierpiński)

Let S be a set of cardinality \aleph_{1}. Then there exists a sequence of functions $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$, such that

$$
S \times S=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Proof.

- We assume that $S=\omega_{1}$.
- For each $\beta \in S$ fix a surjection $g_{\beta}: \omega \rightarrow \beta+1$.
- Define $f_{n}(\beta)=g_{\beta}(n)$.

Motivations

Theorem (Sierpiński)

Let S be a set of cardinality \aleph_{1}. Then there exists a sequence of functions $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$, such that

$$
S \times S=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Proof.

- We assume that $S=\omega_{1}$.
- For each $\beta \in S$ fix a surjection $g_{\beta}: \omega \rightarrow \beta+1$.
- Define $f_{n}(\beta)=g_{\beta}(n)$.

Motivations

Theorem (Sierpiński)

Let S be a set of cardinality \aleph_{1}. Then there exists a sequence of functions $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$, such that

$$
S \times S=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Proof.

- We assume that $S=\omega_{1}$.
- For each $\beta \in S$ fix a surjection $g_{\beta}: \omega \rightarrow \beta+1$.
- Define $f_{n}(\beta)=g_{\beta}(n)$.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{X}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{X}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

- Fix $A \in[S]^{K_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{X \in A} F_{X}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{X}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

Proof.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{X}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{X}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

Proof.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{X}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{X}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{t(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

Proof.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{x}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{X}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

Proof.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{X}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{x}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

Proof.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{X}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{X}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Remark (Sierpiński)

If S has the above property then $|S| \leqslant \aleph_{1}$.

Proof.

- Fix $A \in[S]^{\aleph_{1}}$.
- For each $x \in A$ let $F_{x}=\left\{f_{n}(x): n \in \omega\right\}$.
- The set $\bigcup_{x \in A} F_{x}$ has cardinality $\leqslant \aleph_{1}$.
- Suppose $p \in S$ is such that $p \notin F_{x}$ for $x \in A$.
- For each $a \in A$ there is $n(a) \in \omega$ such that $a=f_{n(a)}(p)$.
- The map $a \mapsto n(a)$ must be one-to-one. A contradiction.

Question

Is it possible that the square of some uncountable subset of \mathbb{R} is covered by countably many continuous real functions and their inverses?

In other words:
Question
Does there exist a family $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in w}$ consisting of continuous functions such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some $S \in[\mathbb{R}]^{\aleph_{1}}$?

Question

Is it possible that the square of some uncountable subset of \mathbb{R} is covered by countably many continuous real functions and their inverses?

In other words:
Question
Does there exist a family $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ consisting of continuous functions such that

for some $S \in[\mathbb{R}]^{\aleph_{1}}$?

Question

Is it possible that the square of some uncountable subset of \mathbb{R} is covered by countably many continuous real functions and their inverses?

In other words:

Question

Does there exist a family $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ consisting of continuous functions such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some $S \in[\mathbb{R}]^{\aleph_{1}}$?

Question

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \cup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each $f_{n}: S \rightarrow S$ is a non-decreasing function.
- Then both f_{n} and f_{7}^{-1} are chains in $S \times S$.
- Thus, if $|S|>\aleph_{0}$ then S is a Countryman type!

Question

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each $f_{n}: S \rightarrow S$ is a non-decreasing function.
- Then both f_{n} and f_{n}^{-1} are chains in $S \times S$.
- Thus, if $|S|>\aleph_{0}$ then S is a Countryman type!

Question

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each $f_{n}: S \rightarrow S$ is a non-decreasing function.
- Then both f_{n} and f_{n}^{-1} are chains in $S \times S$.
- Thus, if $|S|>\aleph_{0}$ then S is a Countryman type!

Question

How about covering by (continuous) non-decreasing functions?

- Suppose $S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each $f_{n}: S \rightarrow S$ is a non-decreasing function.
- Then both f_{n} and f_{n}^{-1} are chains in $S \times S$.
- Thus, if $|S|>\aleph_{0}$ then S is a Countryman type!

Proposition

There exists a compact line K and a family $\left\{f_{n}: K \rightarrow K\right\}_{n \in \omega}$ consisting of continuous non-decreasing functions such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq K$.

Proposition

There exists a compact line K and a family $\left\{f_{n}: K \rightarrow K\right\}_{n \in \omega}$ consisting of continuous non-decreasing functions such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq K$.

Another motivation

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^{2}$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not \subset A$ whenever $X, Y \in[\mathbb{R}]^{\aleph_{2}}$.
- $X \times Y \nsubseteq A$ whenever X, Y are perfect subsets of \mathbb{R}.

Question
Is it possible that $A=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each f_{n} is a continuous real function?

Another motivation

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^{2}$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \nsubseteq A$ whenever $X, Y \in[\mathbb{R}]^{\aleph_{2}}$.
- $X \times Y \nsubseteq A$ whenever X, Y are perfect subsets of \mathbb{R}.

Question
Is it possible that $A=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each f_{n} is a continuous real function?

Another motivation

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^{2}$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \nsubseteq A$ whenever $X, Y \in[\mathbb{R}]^{N_{2}}$.
- $X \times Y \nsubseteq A$ whenever X, Y are perfect subsets of \mathbb{R}.

Question
Is it possible that $A=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each f_{n} is a continuous real function?

Another motivation

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^{2}$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \nsubseteq A$ whenever $X, Y \in[\mathbb{R}]^{\aleph_{2}}$.
- $X \times Y \nsubseteq A$ whenever X, Y are perfect subsets of \mathbb{R}.

Question
Is it possible that $A=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each f_{n} is a continuous real function?

Another motivation

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^{2}$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \not \subset A$ whenever $X, Y \in[\mathbb{R}]^{N_{2}}$.
- $X \times Y \nsubseteq A$ whenever X, Y are perfect subsets of \mathbb{R}.
\square Is it possible that $A=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each f_{n} is a continuous real function?

Another motivation

Proposition (Shelah [5])

There exists an F_{σ} set $A \subseteq \mathbb{R}^{2}$ with the following properties.

- $S \times S \subseteq A$ for some uncountable set S.
- $X \times Y \notin A$ whenever $X, Y \in[\mathbb{R}]^{\aleph_{2}}$.
- $X \times Y \not \subset A$ whenever X, Y are perfect subsets of \mathbb{R}.

Question

Is it possible that $A=\bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$, where each f_{n} is a continuous real function?

Proposition

Assume $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$ and A, B are uncountable sets such that

$$
A \times B \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Then $|A|=|B|=\aleph_{1}$.

Proposition
Let $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ be a family of continuous functions.
Then there are no perfect sets P, Q such that

$$
P \times Q \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Proposition

Assume $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$ and A, B are uncountable sets such that

$$
A \times B \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Then $|A|=|B|=\aleph_{1}$.
Proposition
Let $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ be a family of continuous functions.
Then there are no perfect sets P, Q such that

$$
P \times Q \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Proposition

Assume $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$ and A, B are uncountable sets such that

$$
A \times B \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Then $|A|=|B|=\aleph_{1}$.

Proposition
Let $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ be a family of continuous functions.
Then there are no perfect sets P, Q such that

Proposition

Assume $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$ and A, B are uncountable sets such that

$$
A \times B \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Then $|A|=|B|=\aleph_{1}$.

Proposition

Let $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ be a family of continuous functions.
Then there are no perfect sets P, Q such that

Proposition

Assume $\left\{f_{n}: S \rightarrow S\right\}_{n \in \omega}$ and A, B are uncountable sets such that

$$
A \times B \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Then $|A|=|B|=\aleph_{1}$.

Proposition

Let $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ be a family of continuous functions.
Then there are no perfect sets P, Q such that

$$
P \times Q \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.

The forcing:
$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}\right\rangle$, where (1) $n^{p} \in \omega, s^{p} \in[\omega]^{<\omega}$ and $v^{p} \in\left[\omega_{1}\right]^{<\omega}$;
(2) $f^{D}=\left\{f_{i}^{P}\right\}_{i \in s^{D}} \subseteq \operatorname{Lip}{ }_{1}\left(2^{n^{D}}, 2^{n^{D}}\right)$ and $\varrho^{D}:\left[v^{D}\right]^{2} \rightarrow s^{D}$;
(3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;
(4) $\gamma^{p}(\alpha)=f_{e^{p}(\alpha, \beta)}^{p}\left(\gamma^{p}(\beta)\right)$ whenever $\alpha<\beta$ and $\alpha, \beta \in v^{p}$.

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

for some uncountable set $S \subseteq 2^{\omega}$.

\square
$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}\right\rangle$, where

(2) $f^{D}=\left\{f_{i}^{D}\right\}_{i \in s^{D}} \subseteq \operatorname{Lip}_{1}\left(2^{n^{D}}, 2^{n^{D}}\right)$ and $\varrho^{D}:\left[v^{D}\right]^{2} \rightarrow s^{D}$;
(3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;
(4) $\gamma^{p}(\alpha)=f_{e^{p}(\alpha, \beta)}^{p}\left(\gamma^{p}(\beta)\right)$ whenever $\alpha<\beta$ and $\alpha, \beta \in v^{p}$.

Main result

Theorem

There exists a ccc forcing which introduces a family of 1 -Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.
The forcing:

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.
The forcing:
$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{\rho}\right\rangle$, where

Main result

Theorem

There exists a ccc forcing which introduces a family of 1 -Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.
The forcing:
$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}\right\rangle$, where
(1) $n^{p} \in \omega, s^{p} \in[\omega]^{<\omega}$ and $v^{p} \in\left[\omega_{1}\right]^{<\omega}$;

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.
The forcing:
$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}\right\rangle$, where
(1) $n^{p} \in \omega, s^{p} \in[\omega]^{<\omega}$ and $v^{p} \in\left[\omega_{1}\right]^{<\omega}$;
(2) $f^{p}=\left\{f_{i}^{p}\right\}_{i \in s^{p}} \subseteq \operatorname{Lip}_{1}\left(2^{n^{p}}, 2^{n^{\rho}}\right)$ and $\varrho^{\rho}:\left[v^{p}\right]^{2} \rightarrow s^{p}$;

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.

The forcing:
$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}\right\rangle$, where
(1) $n^{p} \in \omega, s^{p} \in[\omega]^{<\omega}$ and $v^{p} \in\left[\omega_{1}\right]^{<\omega}$;
(2) $f^{p}=\left\{f_{i}^{p}\right\}_{i \in s^{p}} \subseteq \operatorname{Lip}_{1}\left(2^{2^{p}}, 2^{n^{\rho}}\right)$ and $\varrho^{\rho}:\left[v^{\rho}\right]^{2} \rightarrow s^{p}$;
(3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;

Main result

Theorem

There exists a ccc forcing which introduces a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

for some uncountable set $S \subseteq 2^{\omega}$.

The forcing:

$p \in \mathbb{P}$ iff $p=\left\langle n^{p}, s^{p}, v^{p}, f^{p}, \gamma^{p}, \varrho^{p}\right\rangle$, where
(1) $n^{p} \in \omega, s^{p} \in[\omega]^{<\omega}$ and $v^{p} \in\left[\omega_{1}\right]^{<\omega}$;
(2) $f^{p}=\left\{f_{i}^{p}\right\}_{i \in s^{p}} \subseteq \operatorname{Lip}_{1}\left(2^{n^{p}}, 2^{n^{p}}\right)$ and $\varrho^{p}:\left[v^{p}\right]^{2} \rightarrow s^{p}$;
(3) $\gamma^{p}: v^{p} \rightarrow 2^{n^{p}}$ is one-to-one;
(4) $\gamma^{p}(\alpha)=f_{\varrho^{p}(\alpha, \beta)}^{p}\left(\gamma^{p}(\beta)\right)$ whenever $\alpha<\beta$ and $\alpha, \beta \in v^{p}$.

Corollaries

Theorem (ZFC)

There exist a family of 1-Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)
$$

Proof.
By Keisler's absoluteness theorem [2] for the language $L_{\omega_{1}, \omega}(Q)$.

Theorem (ZFC)
There exist an \aleph_{1}-dense set $X \subseteq \mathbb{R}$ and a family of continuous functions $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ such that $X \times X \subseteq \cup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$.

Corollaries

Theorem (ZFC)
There exist a family of 1 -Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

By Keisler's absoluteness theorem [2] for the language $L_{\omega_{1}, \omega}(Q)$.

Corollaries

Theorem (ZFC)

There exist a family of 1 -Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Proof.

By Keisler's absoluteness theorem [2] for the language $L_{\omega_{1}, \omega}(Q)$.

Corollaries

Theorem (ZFC)

There exist a family of 1 -Lipschitz functions $\left\{f_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ and an uncountable set $S \subseteq 2^{\omega}$ such that

$$
S \times S \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right) .
$$

Proof.

By Keisler's absoluteness theorem [2] for the language $L_{\omega_{1}, \omega}(Q)$.

Theorem (ZFC)

There exist an \aleph_{1}-dense set $X \subseteq \mathbb{R}$ and a family of continuous functions $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{n \in \omega}$ such that $X \times X \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$.

Corollary

It is relatively consistent with ZFC that for every set $X \in[\mathbb{R}]^{\aleph_{1}}$ there exists a sequence of continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with $X \times X \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$.

Proof.

This holds in Baumgartner's model [1] in which every two \aleph_{1}-dense subsets of \mathbb{R} are order isomorphic.

Corollary

It is relatively consistent with ZFC that for every set $X \in[\mathbb{R}]^{\aleph_{1}}$ there exists a sequence of continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with $X \times X \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$.

This holds in Baumgartner's model [1] in which every two \aleph_{1}-dense

 subsets of \mathbb{R} are order isomorphic.
Corollary

It is relatively consistent with ZFC that for every set $X \in[\mathbb{R}]^{\aleph_{1}}$ there exists a sequence of continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with $X \times X \subseteq \bigcup_{n \in \omega}\left(f_{n} \cup f_{n}^{-1}\right)$.

Proof.

This holds in Baumgartner's model [1] in which every two \aleph_{1}-dense subsets of \mathbb{R} are order isomorphic.

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in w}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
(2) Some sort of homogeneity.

The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:

- For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous
functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and
an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
C Some sort of homogeneity.
The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
(2) Some sort of homoaeneity.

The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram
(2) Some sort of homogeneity.

The above properties describe the family $\left\{u_{n}\right\}$ new uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
(2) Some sort of homogeneity.

The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
(2) Some sort of homogeneity.

The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
(2) Some sort of homogeneity.

The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

There exists a family of continuous functions $\left\{u_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ with the following properties:
(1) For every family $\left\{g_{n}: 2^{\omega} \rightarrow 2^{\omega}\right\}_{n \in \omega}$ consisting of continuous functions, there exist quotient maps $k: 2^{\omega} \rightarrow 2^{\omega}, \ell: 2^{\omega} \rightarrow 2^{\omega}$ and an injection $\psi: \omega \rightarrow \omega$ such that the diagram

commutes for every $n \in \omega$.
(2) Some sort of homogeneity.

The above properties describe the family $\left\{u_{n}\right\}_{n \in \omega}$ uniquely.

Theorem

Let $\left\{u_{n}\right\}_{n \in \omega}$ be the universal homogeneous family of functions from the previous theorem. Then

$$
X^{2} \subseteq \bigcup_{n \in \omega}\left(u_{n} \cup u_{n}^{-1}\right)
$$

for some uncountable set $X \subseteq 2^{\omega}$.

Theorem
Let $\left\{u_{n}\right\}_{n \in \omega}$ be the universal homogeneous family of functions from the previous theorem. Then

$$
X^{2} \subseteq \bigcup_{n \in \omega}\left(u_{n} \cup u_{n}^{-1}\right)
$$

for some uncountable set $X \subseteq 2^{\omega}$.

References

(J. BAUMGARTNER, All \aleph_{1}-dense sets of reals can be isomorphic, Fund. Math. 79 (1973) 101-106.
囯 J. KEISLER, Logic with quantifier "there exists uncountably many", Annals of Mathematical Logic 1 (1970) 1-93.
W. Kubiś, S. Shelah Analytic colorings, Ann. Pure Appl. Logic 121 (2003) 145-161.
围 K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951) 14-17.
S. SHELAH, Borel sets with large squares, Fund. Math. 159 (1999) 1-50.

