Category-theoretic approach to universal homogeneous structures

Wiesław Kubiś

Instytut Matematyki
Akademia Świętokrzyska
Kielce, POLAND
http://www.pu.kielce.pl/~wkubis/

Będlewo, 12 July 2007

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

Bedlewo, 12 July 2007

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

Bedlewo, 12 July 2007

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Compact spaces "generated" by retractions (Valdivia compacta)
- Banach spaces with a projectional resolution of the identity

Bedlewo, 12 July 2007

Let \Re be a category.

We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g.

$$\begin{array}{ccc}
Y & \xrightarrow{g'} & W \\
g & & & \uparrow \\
Z & \xrightarrow{f} & X
\end{array}$$

We say that \mathfrak{K} has the joint embedding property if for every objects $X, Y \in \mathfrak{K}$ there exist $V \in \mathfrak{K}$ and arrows $f \colon X \to V$ and $g \colon Y \to V$.

Let \Re be a category.

We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g.

$$\begin{array}{ccc}
Y & \xrightarrow{g'} & W \\
g & & \uparrow \\
Z & \xrightarrow{f} & X
\end{array}$$

We say that \Re has the joint embedding property if for every objects $X, Y \in \Re$ there exist $V \in \Re$ and arrows $f: X \to V$ and $g: Y \to V$.

$$Y \xrightarrow{g} V$$

$$\downarrow^{f}$$

$$X$$

Let \Re be a category.

We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g.

We say that \mathfrak{K} has the joint embedding property if for every objects $X, Y \in \mathfrak{K}$ there exist $V \in \mathfrak{K}$ and arrows $f: X \to V$ and $g: Y \to V$.

$$Y \xrightarrow{g} V$$

$$\downarrow^{f}$$
 X

Let \Re be a category.

We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g.

We say that \mathfrak{K} has the joint embedding property if for every objects $X, Y \in \mathfrak{K}$ there exist $V \in \mathfrak{K}$ and arrows $f \colon X \to V$ and $g \colon Y \to V$.

$$Y \xrightarrow{g} V$$

$$\downarrow f$$
 X

Let \Re be a category.

We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g.

We say that \mathfrak{K} has the joint embedding property if for every objects $X, Y \in \mathfrak{K}$ there exist $V \in \mathfrak{K}$ and arrows $f \colon X \to V$ and $g \colon Y \to V$.

Sequences

By a sequence in a category \mathfrak{K} we mean a (covariant) functor $\vec{x}: \lambda \to \mathfrak{K}$, where λ is an ordinal.

There is a natural notion of an arrow between sequences $\vec{t} : \vec{x} \to \vec{y}$.

Sequences

By a sequence in a category \mathfrak{K} we mean a (covariant) functor $\vec{x}: \lambda \to \mathfrak{K}$, where λ is an ordinal.

There is a natural notion of an arrow between sequences $\vec{t} : \vec{x} \to \vec{y}$.

Sequences

By a sequence in a category \mathfrak{K} we mean a (covariant) functor $\vec{x}: \lambda \to \mathfrak{K}$, where λ is an ordinal.

There is a natural notion of an arrow between sequences $\vec{f} : \vec{x} \to \vec{y}$.

The κ -completion of a category

Let κ be a regular cardinal and let \mathfrak{K} be a category. Denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \mathfrak{K} of length $< \kappa$.

A category $\mathfrak L$ is κ -closed if sequences of length $<\kappa$ have colimits in $\mathfrak L$.

Theorem

• For every κ -closed category \mathfrak{L} , every covariant functor $F: \mathfrak{K} \to \mathfrak{L}$ has a unique extension $F': \mathfrak{S}_{\kappa}(\mathfrak{K}) \to \mathfrak{L}$ to a κ -continuous functor.

The κ -completion of a category

Let κ be a regular cardinal and let \mathfrak{K} be a category. Denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \mathfrak{K} of length $< \kappa$.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

• For every κ -closed category \mathfrak{L} , every covariant functor $F: \mathfrak{K} \to \mathfrak{L}$ has a unique extension $F': \mathfrak{S}_{\kappa}(\mathfrak{K}) \to \mathfrak{L}$ to a κ -continuous functor.

The κ -completion of a category

Let κ be a regular cardinal and let \mathfrak{K} be a category. Denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \mathfrak{K} of length $< \kappa$.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

• For every κ -closed category \mathfrak{L} , every covariant functor $F: \mathfrak{K} \to \mathfrak{L}$ has a unique extension $F': \mathfrak{S}_{\kappa}(\mathfrak{K}) \to \mathfrak{L}$ to a κ -continuous functor.

A κ -Fraïssé sequence in \Re is an inductive sequence $\vec{u} \colon \kappa \to \Re$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

A κ -Fraïssé sequence in $\mathfrak K$ is an inductive sequence $\vec u \colon \kappa \to \mathfrak K$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

A κ -Fraïssé sequence in $\mathfrak K$ is an inductive sequence $\vec u\colon \kappa\to\mathfrak K$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

A κ -Fraïssé sequence in $\mathfrak K$ is an inductive sequence $\vec u\colon \kappa\to\mathfrak K$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}.$

We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D1) For every $x \in \Re$ there exists $a \in Dom(\mathcal{F})$ such that $\Re(x, a) \neq \emptyset$.

(D2) For every arrow $g: a \to y$ in \Re with $a \in Dom(\mathcal{F})$ there exist arrows f, h in \Re such that $f \in \mathcal{F}$ and f = hg.

Bedlewo, 12 July 2007

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D1) For every $x \in \mathfrak{K}$ there exists $a \in \mathsf{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

(D2) For every arrow $g: a \to y$ in \Re with $a \in Dom(\mathcal{F})$ there exist arrows f, h in \Re such that $f \in \mathcal{F}$ and f = hg.

$$a \xrightarrow{f \in \mathcal{F}} z$$

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D1) For every $x \in \Re$ there exists $a \in Dom(\mathcal{F})$ such that $\Re(x, a) \neq \emptyset$.

(D2) For every arrow $g: a \to y$ in \Re with $a \in Dom(\mathcal{F})$ there exist arrows f, h in \Re such that $f \in \mathcal{F}$ and f = hg.

$$a \xrightarrow{f \in \mathcal{F}} z$$

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D1) For every $x \in \mathfrak{K}$ there exists $a \in \mathsf{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

(D2) For every arrow $g: a \to y$ in \mathfrak{K} with $a \in \mathsf{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and f = hg.

The existence

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{u} \to a$.

Theorem

Let $\kappa > 1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \mathsf{Arr}(\Re)$ is dominating in \Re and $|\mathcal{F}| \leqslant \kappa$.

Then there exists a Fraïssé sequence $\vec{u}: \kappa \to \Re$ such that $\{u_{\alpha}: \alpha < \kappa\} \subseteq \mathsf{Dom}(\mathcal{F}).$

The existence

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{u} \to a$.

Theorem

Let $\kappa > 1$ be a regular cardinal and let \mathfrak{R} be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \mathsf{Arr}(\mathfrak{K})$ is dominating in \mathfrak{K} and $|\mathcal{F}| \leqslant \kappa$.

Then there exists a Fraïssé sequence $\vec{u}: \kappa \to \Re$ such that $\{u_{\alpha}: \alpha < \kappa\} \subseteq \mathsf{Dom}(\mathcal{F}).$

The existence

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{u} \to a$.

Theorem

Let $\kappa > 1$ be a regular cardinal and let \mathfrak{R} be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \mathsf{Arr}(\mathfrak{K})$ is dominating in \mathfrak{K} and $|\mathcal{F}| \leqslant \kappa$.

Then there exists a Fraïssé sequence $\vec{u}: \kappa \to \Re$ such that $\{u_{\alpha}: \alpha < \kappa\} \subseteq \mathsf{Dom}(\mathcal{F}).$

Countable Fraïssé sequences

Theorem (Countable Cofinality)

Assume \vec{u} is a Fraïssé sequence in a category with amalgamation \Re . Then for every countable sequence \vec{x} in \Re there exists an arrow $\vec{t}: \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} satisfies amalgamation then \vec{u} is cofinal in $\mathfrak{S}_{\aleph_1}(\mathfrak{K})$.

Countable Fraïssé sequences

Theorem (Countable Cofinality)

Assume \vec{u} is a Fraïssé sequence in a category with amalgamation \Re . Then for every countable sequence \vec{x} in \Re there exists an arrow $\vec{t}: \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} satisfies amalgamation then \vec{u} is cofinal in $\mathfrak{S}_{\aleph_1}(\mathfrak{K})$.

Proof.

Proof.

Proof. x_0

Proof.

Homogeneity & Uniqueness

Theorem

Assume that \vec{u} , \vec{v} are countable Fraïssé sequences in a category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F\vec{u}_k = \vec{v}_\ell f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a, b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that Fi = jf.

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v} \\
\vec{v}_{k} \qquad \uparrow \vec{v}_{\ell} \qquad i \qquad \uparrow \\
u_{k} \xrightarrow{f} v_{\ell} \qquad a \xrightarrow{f} b$$

Homogeneity & Uniqueness

Theorem

Assume that \vec{u} , \vec{v} are countable Fraïssé sequences in a category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F\vec{u}_k = \vec{v}_\ell f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a, b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that Fi = jf.

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v} \\
\vec{v}_{k} \qquad \uparrow \vec{v}_{\ell} \qquad i \qquad \uparrow \\
U_{k} \xrightarrow{f} V_{\ell} \qquad a \xrightarrow{f} b$$

Homogeneity & Uniqueness

Theorem

Assume that \vec{u} , \vec{v} are countable Fraïssé sequences in a category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F\vec{u}_k = \vec{v}_\ell f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a,b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that Fi = jf.

Będlewo, 12 July 2007

Theorem

Let $\kappa > \aleph_0$ be regular and assume that $\mathfrak R$ is a full and cofinal subcategory of a κ -closed category $\mathfrak L$. If $\mathfrak L$ has the amalgamation property, then:

- ① There exists, up to isomorphism, at most one κ -Fraïssé sequence in \Re .
- ② A κ -Fraïssé sequence in $\mathfrak R$ is also a Fraïssé sequence in $\mathfrak L$ and it is both $\mathfrak L$ -homogeneous and $\mathfrak S_{\kappa^+}(\mathfrak L)$ -cofinal.

Remark

Theorem

Let $\kappa > \aleph_0$ be regular and assume that $\mathfrak R$ is a full and cofinal subcategory of a κ -closed category $\mathfrak L$. If $\mathfrak L$ has the amalgamation property, then:

- There exists, up to isomorphism, at most one κ -Fraïssé sequence in \Re .
- A κ-Fraïssé sequence in R is also a Fraïssé sequence in L and it is both L-homogeneous and S_{κ+}(L)-cofinal.

Remark

Theorem

Let $\kappa > \aleph_0$ be regular and assume that $\mathfrak R$ is a full and cofinal subcategory of a κ -closed category $\mathfrak L$. If $\mathfrak L$ has the amalgamation property, then:

- There exists, up to isomorphism, at most one κ -Fraïssé sequence in \Re .
- ② A κ -Fraïssé sequence in $\mathfrak R$ is also a Fraïssé sequence in $\mathfrak L$ and it is both $\mathfrak L$ -homogeneous and $\mathfrak S_{\kappa^+}(\mathfrak L)$ -cofinal.

Remark

Theorem

Let $\kappa > \aleph_0$ be regular and assume that $\mathfrak R$ is a full and cofinal subcategory of a κ -closed category $\mathfrak L$. If $\mathfrak L$ has the amalgamation property, then:

- There exists, up to isomorphism, at most one κ -Fraïssé sequence in \Re .
- **2** A κ -Fraïssé sequence in $\mathfrak R$ is also a Fraïssé sequence in $\mathfrak L$ and it is both $\mathfrak L$ -homogeneous and $\mathfrak S_{\kappa^+}(\mathfrak L)$ -cofinal.

Remark

Valdivia compacta

Definition: A space K of weight $\leq \aleph_1$ is Valdivia compact iff $K = \varprojlim \vec{s}$, where \vec{s} is a continuous inverse sequence of metric compacta whose all bonding maps are retractions. We would like to prove that:

Theorem (CH

There exists a Valdivia compact K of weight ℵ₁ such that.

- Every nonempty Valdivia compact of weight $\leqslant \aleph_1$ is a retract of K.
- For every retractions r: X → Y, k: K → X and l: K → Y, where X, Y are metric compacta, there exists a homeomorphism h: K → K such that

$$\begin{array}{c|c}
K & \xrightarrow{h} & K \\
\downarrow k & & \downarrow \ell \\
X & \xrightarrow{r} & Y
\end{array}$$

Valdivia compacta

Definition: A space K of weight $\leq \aleph_1$ is Valdivia compact iff $K = \lim \vec{s}$, where \vec{s} is a continuous inverse sequence of metric compacta whose all bonding maps are retractions. We would like to prove that:

- Every nonempty Valdivia compact of weight $\leq \aleph_1$ is a retract of K.
- For every retractions $r: X \to Y$, $k: K \to X$ and $\ell: K \to Y$, where

$$\begin{array}{c|c}
K & \xrightarrow{h} & K \\
\downarrow k & & \downarrow \ell \\
X & \xrightarrow{r} & Y
\end{array}$$

Valdivia compacta

Definition: A space K of weight $\leq \aleph_1$ is Valdivia compact iff $K = \varprojlim \vec{s}$, where \vec{s} is a continuous inverse sequence of metric compacta whose all bonding maps are retractions. We would like to prove that:

Theorem (CH)

There exists a Valdivia compact K of weight ℵ₁ such that:

- Every nonempty Valdivia compact of weight $\leq \aleph_1$ is a retract of K.
- For every retractions r: X → Y, k: K → X and l: K → Y, where X, Y are metric compacta, there exists a homeomorphism h: K → K such that

$$\begin{array}{c|c}
K & \xrightarrow{h} & K \\
\downarrow k & & \downarrow \ell \\
X & \xrightarrow{r} & Y
\end{array}$$

Fix a category \mathfrak{K} . Denote by \mathfrak{T} the following category:

- The objects of $\ddagger \Re$ are the same as the objects of \Re .
- Given $a, b \in \ddagger \mathfrak{K}$, an arrow $f : a \to b$ in $\ddagger \mathfrak{K}$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \mathfrak{K} such that $re = \mathrm{id}_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

$$gf = \langle r(f)r(g), e(g)e(f)\rangle.$$

Claim

If ${\mathfrak K}$ has pullbacks or pushouts then ${\sharp {\mathfrak K}}$ has the amalgamation property.

Fix a category \Re . Denote by $\mathop{\sharp}\Re$ the following category:

- The objects of $\ddagger \Re$ are the same as the objects of \Re .
- Given $a, b \in \ddagger \mathfrak{K}$, an arrow $f : a \to b$ in $\ddagger \mathfrak{K}$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \mathfrak{K} such that $re = \mathrm{id}_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

$$gf = \langle r(f)r(g), e(g)e(f)\rangle.$$

Claim

If ${\mathfrak K}$ has pullbacks or pushouts then ${\sharp {\mathfrak K}}$ has the amalgamation property.

Fix a category \Re . Denote by $\mathop{\sharp}\Re$ the following category:

- The objects of ‡R are the same as the objects of R.
- Given $a, b \in \ddagger \mathfrak{K}$, an arrow $f : a \to b$ in $\ddagger \mathfrak{K}$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \mathfrak{K} such that $re = \mathrm{id}_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

$$gf = \langle r(f)r(g), e(g)e(f)\rangle.$$

Claim

If \Re has pullbacks or pushouts then $\ddagger \Re$ has the amalgamation property.

Fix a category \mathfrak{K} . Denote by $\mathfrak{T}\mathfrak{K}$ the following category:

- The objects of ‡R are the same as the objects of R.
- Given $a, b \in \ddagger \mathfrak{K}$, an arrow $f : a \to b$ in $\ddagger \mathfrak{K}$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \mathfrak{K} such that $re = \mathrm{id}_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

$$gf = \langle r(f)r(g), e(g)e(f)\rangle.$$

Claim

If \Re has pullbacks or pushouts then $\ddagger \Re$ has the amalgamation property.

Pushouts

Pushouts

Pushouts

Given a category \mathfrak{K} , let $\Phi : \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$.

We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \Re$ of the same regular length κ . Then for every arrow $f: u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f}: \vec{u} \to \vec{v}$ such that $\vec{f}\vec{u}_0 = f$.

In particular $\vec{u} \approx \vec{v}$.

Bedlewo, 12 July 2007

Given a category \mathfrak{K} , let $\Phi \colon \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$.

We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \Re$ of the same regular length κ . Then for every arrow $f: u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f}: \vec{u} \to \vec{v}$ such that $\vec{f} \vec{u}_0 = f$.

$$\vec{u} \xrightarrow{\vec{f}} \vec{v}$$

$$\vec{v}_0 \downarrow \qquad \qquad \vec{v}$$

Given a category \mathfrak{K} , let $\Phi \colon \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$.

We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \Re$ of the same regular length κ . Then for every arrow $f \colon u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f} \colon \vec{u} \to \vec{v}$ such that $\vec{f} \vec{u}_0 = f$.

$$\vec{u} \xrightarrow{\vec{f}} \vec{v}$$

$$\vec{u}_0 \mid \qquad \qquad f$$

Given a category \mathfrak{K} , let $\Phi \colon \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$.

We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \mathfrak{K} be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \mathfrak{K}$ of the same regular length κ . Then for every arrow $f \colon u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f} \colon \vec{u} \to \vec{v}$ such that $\vec{f} \vec{u}_0 = f$.

Given a category \Re , let $\Phi: \ddagger \Re \to \Re$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \Re$.

We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let $\mathfrak R$ be a category and let $\vec u$ and $\vec v$ be semicontinuous Fraïssé sequences in $\ddagger \mathfrak R$ of the same regular length κ . Then for every arrow $f\colon u_0 \to \vec v$ there exists an isomorphism of sequences $\vec f\colon \vec u \to \vec v$ such that $\vec f \vec u_0 = f$.

Proper amalgamations

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \mathfrak{K}$.

We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that $\ddagger \Re$ has proper amalgamations if every pair of arrows of $\ddagger \Re$ with the same domain can be properly amalgamated.

Proper amalgamations

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \mathfrak{K}$. We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that $\ddagger \Re$ has proper amalgamations if every pair of arrows of $\ddagger \Re$ with the same domain can be properly amalgamated.

Proper amalgamations

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \mathfrak{K}$. We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that $\ddagger \Re$ has proper amalgamations if every pair of arrows of $\ddagger \Re$ with the same domain can be properly amalgamated.

Proper amalgamations

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \mathfrak{K}$. We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that $\ddagger \Re$ has proper amalgamations if every pair of arrows of $\ddagger \Re$ with the same domain can be properly amalgamated.

If \Re has pullbacks or pushouts then $\mathop{\ddagger}\Re$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

Let $\mathfrak R$ be a category such that $\ddagger \mathfrak R$ has proper amalgamations. Assume $\vec{\mathfrak u}$ is a semi-continuous κ -Fraïssé sequence in $\ddagger \mathfrak R$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger \mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \mathfrak{K}$.

Corollary

Let $\mathfrak R$ be a category such that $\ddagger \mathfrak R$ has proper amalgamations. Assume $\vec{\mathfrak u}$ is a semi-continuous κ -Fraïssé sequence in $\ddagger \mathfrak R$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger\mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger\mathfrak{K}$.

Corollary

Let $\mathfrak R$ be a category such that $\ddagger \mathfrak R$ has proper amalgamations. Assume $\vec{\mathfrak u}$ is a semi-continuous κ -Fraïssé sequence in $\ddagger \mathfrak R$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger\mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger\mathfrak{K}$.

Corollary

Let $\mathfrak R$ be a category such that $\ddagger \mathfrak R$ has proper amalgamations. Assume $\vec{\mathsf u}$ is a semi-continuous κ -Fraïssé sequence in $\ddagger \mathfrak R$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger\mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger\mathfrak{K}$.

Corollary

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm \leqslant 1.

Claim

 \mathfrak{B}_{\aleph_0} is \aleph_1 -closed and has pushouts.

Theorem

Under CH there exists a Banach space E of density ℵ₁ such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.
- E is "projectively homogeneous".

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm \leqslant 1.

Claim

 \mathfrak{B}_{\aleph_0} is \aleph_1 -closed and has pushouts.

Theorem

Under CH there exists a Banach space E of density ℵ₁ such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.
- E is "projectively homogeneous".

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm \leqslant 1.

Claim

 \mathfrak{B}_{\aleph_0} is \aleph_1 -closed and has pushouts.

Theorem

Under CH there exists a Banach space E of density \aleph_1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density $\leq \aleph_1$ and with a PRI is linearly isometric to a one-complemented subspace of E.
- E is "projectively homogeneous".

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm \leqslant 1.

Claim

 \mathfrak{B}_{\aleph_0} is \aleph_1 -closed and has pushouts.

Theorem

Under CH there exists a Banach space E of density \aleph_1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.
- E is "projectively homogeneous".

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm \leqslant 1.

Claim

 \mathfrak{B}_{\aleph_0} is $\aleph_1\text{-closed}$ and has pushouts.

Theorem

Under CH there exists a Banach space E of density \aleph_1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.
- E is "projectively homogeneous".

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm \leqslant 1.

Claim

 \mathfrak{B}_{\aleph_0} is \aleph_1 -closed and has pushouts.

Theorem

Under CH there exists a Banach space E of density ℵ₁ such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.
- E is "projectively homogeneous".

Selected bibliography

- DROSTE, M.; GÖBEL, R., A categorical theorem on universal objects and its application in abelian group theory and computer science, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 49–74, Contemp. Math., 131, Part 3, Amer. Math. Soc., Providence, RI, 1992.
- FRAÏSSÉ, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182.
- IRWIN, T.; SOLECKI, S., *Projective Fraïssé limits and the pseudo-arc*, Trans. Amer. Math. Soc. **358**, no. 7 (2006) 3077–3096.
- JÓNSSON, B., *Homogeneous universal relational systems*, Math. Scand. 8 (1960) 137–142.

