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Cantor’s back-and-forth method

Theorem (G. Cantor)
Let Q denote the set of rational numbers. Then:
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Cantor’s back-and-forth method

Theorem (G. Cantor)
Let Q denote the set of rational numbers. Then:
@ Every countable linearly ordered set embeds into Q.
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Cantor’s back-and-forth method

Theorem (G. Cantor)
Let Q denote the set of rational numbers. Then:
@ Every countable linearly ordered set embeds into Q.

@ For every finite sets A, B C Q, every order preserving injection
f: A— B extends to an order isomorphism F: Q — Q.
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Cantor’s back-and-forth method

Theorem (G. Cantor)
Let Q denote the set of rational numbers. Then:
@ Every countable linearly ordered set embeds into Q.
@ For every finite sets A, B C Q, every order preserving injection
f: A— B extends to an order isomorphism F: Q — Q.
@ Q is a unique (up to order isomorphism) countable linearly
ordered set with the above properties.
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Cantor’s back-and-forth method

Theorem (G. Cantor)
Let Q denote the set of rational numbers. Then:
@ Every countable linearly ordered set embeds into Q.

@ For every finite sets A, B C Q, every order preserving injection
f: A— B extends to an order isomorphism F: Q — Q.

@ Q is a unique (up to order isomorphism) countable linearly
ordered set with the above properties.

Corollary
Q is the unique countable dense linear order with no end-points.
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Proof.
@ Let Q = U,c,, Qn, where each Q; is finite and Q, € Q1.
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Proof.
@ Let Q = U,c,, Qn, where each Q; is finite and Q, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.
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Proof.
@ Let Q = U,c,, Qn, where each Q; is finite and Q, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

@ Define inductively embeddings f,: P, — Q, so that fo11 | Py = fy.
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Proof.
@ Let Q = U,c,, Qn, where each Q; is finite and Q, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

@ Define inductively embeddings f,: P, — Q, so that fo11 | Py = fy.
@ Now assume P=Q and f: A— Bis given, where A, B C Qy,.
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Proof.
@ Let Q = U,c,, Qn, where each Q; is finite and Q, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

@ Define inductively embeddings f,: P, — Q, so that fo11 | Py = fy.
@ Now assume P=Q and f: A— Bis given, where A, B C Qy,.
@ Extend fto f;: Qg — Qk,, Where ky > k.

sl

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 4/23




Proof.
@ Let Q = U,c,, Qn, where each Q; is finite and Q, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

@ Define inductively embeddings f,: P, — Q, so that fo11 | Py = fy.
@ Now assume P =Q and f: A— Bis given, where A, B C Q.

@ Extend fto f;: Qg — Qk,, Where ky > k.

@ Extend f, " to amap gi: Q, — Qk,, Where ko > k;.
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Proof.
@ Let Q = U, @n, where each @, is finite and Qp, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

@ Define inductively embeddings f,: P, — Q, so that fo11 | Py = fy.
@ Now assume P =Q and f: A— Bis given, where A, B C Q.

@ Extend fto f;: Qg — Qk,, Where ky > k.

@ Extend f, " to amap gi: Q, — Qk,, Where ko > k;.

@ Extend gy ' to fo: Qu, — Qi,, Where k3 > ko.
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Proof.
@ Let Q = U, @n, where each @, is finite and Qp, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

Define inductively embeddings f,: P, — Q, so that f,. 1 [ Py = fp.
Now assume P = Q and f: A — Biis given, where A, B C Qy,.
Extend fto f;: Qg, — Qk,, Where ki > k.

Extend f, ' to amap gy : Qk, — Qx,, Where ko > ki.

Extend gy ' to fo: Qu, — Qi,, Where k3 > k.

°
°
°
°
°
@ Andsoon ...
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Proof.
@ Let Q = U, @n, where each @, is finite and Qp, € Q1.

@ Let P =/, Pnbe alinearly ordered set, where P, C P, 4 and
each P, is finite.

@ Define inductively embeddings f,: P, — Q, so that fo11 | Py = fy.
@ Now assume P =Q and f: A— Bis given, where A, B C Q.

@ Extend fto f;: Qg — Qk,, Where ky > k.

@ Extend f, " to amap gi: Q, — Qk,, Where ko > k;.

@ Extend gy ' to fo: Qu, — Qi,, Where k3 > ko.

@ Andsoon ...

°

o

Uneo fn is @an isomorphism extending .
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Theorem (R. Fraissé 1954)

Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:
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Theorem (R. Fraissé 1954)
Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:

@ Forevery A, B € M there is C € M such that both A and B embed
into C. (Joint Embedding)
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Theorem (R. Fraissé 1954)
Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:
@ Forevery A, B € M there is C € M such that both A and B embed
into C. (Joint Embedding)
@ For every two embeddings f: E — A and g: E — B, where

E,A, B e M, there exist D € M and embeddings f': A — D,
g : B— Dsuchthatf of =g og. (Amalgamation)
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Theorem (R. Fraissé 1954)

Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:
@ Forevery A, B € M there is C € M such that both A and B embed
into C. (Joint Embedding)
@ For every two embeddings f: E — A and g: E — B, where
E,A, B e M, there exist D € M and embeddings f': A — D,
g : B— Dsuchthatf of =g og. (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of
the same language such that:
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Theorem (R. Fraissé 1954)
Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:

@ Forevery A, B € M there is C € M such that both A and B embed
into C. (Joint Embedding)
@ For every two embeddings f: E — A and g: E — B, where
E,A, B e M, there exist D € M and embeddings f': A — D,
g : B— Dsuchthatf of =g og. (Amalgamation)
Then there exists a unique, up to isomorphism, countable model M of
the same language such that:

@ Every A € M embeds into M.
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Theorem (R. Fraissé 1954)
Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:

@ Forevery A, B € M there is C € M such that both A and B embed
into C. (Joint Embedding)
@ For every two embeddings f: E — A and g: E — B, where
E, A, B e M, there exist D € M and embeddings f': A— D,
g : B— Dsuchthatf of =g og. (Amalgamation)
Then there exists a unique, up to isomorphism, countable model M of
the same language such that:
@ Every A € M embeds into M.
@ forevery embeddings f: A— M andg: A— B, where A, B € M,
there exists and embedding f: B — M such thatfo g = f.

rr'i
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Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space U with the
following properties:
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Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space U with the
following properties:

@ Every separable metric space is isometric to a subset of U.
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Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space U with the
following properties:

@ Every separable metric space is isometric to a subset of U.

@ For every finite sets A, B C U, every isometry f: A— B extends to
an isometric bijection F: U — U.
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Categories

Let R be a category.
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Categories

Let R be a category.
@ We say that & has the amalgamation property if for every arrows
f:Z— Xandg: Z— Y there are arrows f': X — W and
g:Y— Wsuchthatfof=g og.

/
ow
f

—X

Q
—=<<

N
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Categories

Let R be a category.

@ We say that & has the amalgamation property if for every arrows
f:Z— Xandg: Z— Y there are arrows f': X — W and
g:Y— Wsuchthatfof=g og.

!
ow

Q
—=<
=

N

—X

@ If moreover for every other pair of arrows k: X — Vand/¢: Y — V
with k o f = ¢ o g there exists a unique arrow h: W — V such that

foh=kandg oh=1/(

then (f', g’) is called the pushout of (f, g). las!
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Pushouts

The pushout of (f, g)

Y ; w
g

g f

V4 . X
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Pushouts

The pushout of (f, g)

g 1/
k
f/
; X
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Pushouts

The pushout of (f, g)
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.

@ A sequence X can be described as {x,}nc., together with arrows
iMm: xn — Xm for n < m, such that
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.
@ A sequence X can be described as {x,}nc., together with arrows
iMm: xn — Xm for n < m, such that
Q@ "=id,,
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.
@ A sequence X can be described as {x,}nc., together with arrows
i Xn — Xm for n < m, such that
Q@ "=id,,
Qk<i<m= ["=ilolif.
We shall write X = (xp, i, w).
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.
@ A sequence X can be described as {x,} nc. together with arrows
i Xn — Xm for n < m, such that
Q@ i"=id,,
Qk<tl<m= i"=il"olif.
We shall write X = (X, i, w).

Let X = (xp, iT,w) and ¥ = (yp,j, w) be sequences in K.
A transformation of X into y is a pair (¢, f) such that

Q@ ¢: w— wisincreasing;
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.
@ A sequence X can be described as {x,} nc. together with arrows
i Xn — Xm for n < m, such that
Q@ i"=id,,
Qk<tl<m= i"=il"olif.
We shall write X = (X, i, w).

Let X = (xp, iT,w) and ¥ = (yp,j, w) be sequences in K.
A transformation of X into y is a pair (¢, f) such that

Q@ ¢: w — wisincreasing;
Q f = {fa}ncw, Where fy: x, — Yo(n)
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Sequences

@ By a sequence in a category £ we mean a functor X from
w={0,1,...}into K.

@ A sequence X can be described as {x,} nc. together with arrows
i Xn — Xm for n < m, such that

Q@ "=id,,

Qk<tl<m= i"=il"olif.
We shall write X = (X, i, w).
Let X = (xp, iT,w) and ¥ = (yp,j, w) be sequences in K.
A transformation of X into y is a pair (¢, ?> such that
Q@ ¢: w— wisincreasing;
Q 7= {f,}new, Where f,: x, — Yoo(n)

Q@n<m = fpoim= ;’((g;)of,,.
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Arrows between sequences

@ Let X, ¥ be sequences in & and let (o, f}, (1, g) be transformations
between them.
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Arrows between sequences

@ Let X, ¥ be sequences in & and let (o, f}, (1, g) be transformations
between them. We say that they are equivalent if all diagrams like

> Yo(n) Yip(n) e Yip(m) Yio(m)
X Tgn ng %
Xn e Xm

are commutative.
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Arrows between sequences

@ Let X, ¥ be sequences in & and let (o, f), (1, g) be transformations
between them. We say that they are equivalent if all diagrams like

> Yo(n) Yip(n) e Yip(m) Yio(m)
X Tgn ng %
Xn e Xm

are commutative.

@ An arrow of sequences X — ¥ is an equivalence class of this
relation.
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Arrows between sequences

@ Let X, ¥ be sequences in & and let (o, 7>, (1, g) be transformations
between them. We say that they are equivalent if all diagrams like

> Yo(n) Yip(n) e Yip(m) Yio(m)
X Tgn ng %
Xn e Xm

are commutative.

@ An arrow of sequences X — ¥ is an equivalence class of this
relation.

e We write f: X — ¥, having in mind the equivalence class of a
transformation f = {fp}ney.
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Let R be a fixed category.
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Let 8 be a fixed category.
A Fraissé sequence in £ is a sequence U = (up, i, w) satisfying the
following conditions:
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Let 8 be a fixed category.

A Fraissé sequence in £ is a sequence U = (up, i, w) satisfying the
following conditions:

(U) For every x € R there exists n € w such that &(x, up) # 0.

Un

7
.'.. H
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Let 8 be a fixed category.

A Fraissé sequence in £ is a sequence U = (up, i, w) satisfying the
following conditions:

(U) For every x € R there exists n € w such that &(x, up) # 0.

Un
4

X

(A) Forevery n € w and for every arrow f € &(up, y), where y € R,
there exist m > nand g € K(y, um) such that i’ = go f.

(s
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Let 8 be a fixed category.

A Fraissé sequence in & is a sequence U = (up, i7", w) satisfying the
following conditions:

(U) For every x € R there exists n € w such that &(x, up) # 0.

Un
4

X

(A) For every n € w and for every arrow f € R(up, y), where y € &,
there exist m > nand g € &(y, um) such that i’ = go f.
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Dominating families of arrows
Let F be a set of arrows in 8. Let Dom(F) = {dom(f): f € F}.
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Dominating families of arrows
Let F be a set of arrows in 8. Let Dom(F) = {dom(f): f € F}.

We say that F is dominating in R if the following conditions are
satisfied:

(s

12/23

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/)

Cantor’s back-and-forth method UPEI, 26 March 2007



Dominating families of arrows

Let F be a set of arrows in 8. Let Dom(F) = {dom(f): f € F}.
We say that F is dominating in R if the following conditions are
satisfied:

(D1) For every x € 8 there exists a € Dom(F) such that R(x, a) # 0.

X > a

(s
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Dominating families of arrows

Let F be a set of arrows in 8. Let Dom(F) = {dom(f): f € F}.
We say that F is dominating in R if the following conditions are
satisfied:

(D1) For every x € 8 there exists a € Dom(F) such that R(x, a) # 0.

X > a

(D2) For every arrow g: a — y in K with a € Dom(F) there exist arrows
f,hin Rsuchthatfe Fand f=hog.

a

N

y
(s
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Dominating families of arrows
Let F be a set of arrows in &. Let Dom(F) = {dom(f): f € F}.
We say that F is dominating in £ if the following conditions are
satisfied:
(D1) For every x € f there exists a € Dom(F) such that &(x, a) # 0.

X s ~a

(D2) For every arrow g: a — y in R with a € Dom(F) there exist arrows
f,hin Rsuchthatf € Fand f=hog.

(s
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Dominating families of arrows
Let F be a set of arrows in &. Let Dom(F) = {dom(f): f € F}.
We say that F is dominating in £ if the following conditions are
satisfied:
(D1) For every x € f there exists a € Dom(F) such that &(x, a) # 0.

X s ~a

(D2) For every arrow g: a — y in R with a € Dom(F) there exist arrows
f,hin Rsuchthatf € Fand f=hog.
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The existence

Theorem

Let R be a category which has the amalgamation property and the joint

embedding property. Assume further that F C Arr(R) is dominating in
R and |f | < Np.
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The existence

Theorem

Let R be a category which has the amalgamation property and the joint

embedding property. Assume further that F C Arr(R) is dominating in
R and |f | < Np.

Then there exists a Fraissé sequence U = (up, i",w) in &
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The existence

Theorem

Let R be a category which has the amalgamation property and the joint
embedding property. Assume further that F C Arr(R) is dominating in
R and |f | < Np.

Then there exists a Fraissé sequence U = (up, i, w) in & such that
{Un: n € w} C Dom(F).
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The existence

Theorem

Let R be a category which has the amalgamation property and the joint
embedding property. Assume further that F C Arr(R) is dominating in
R and |f | < Np.

Then there exists a Fraissé sequence U = (up, i, w) in & such that
{Un: n € w} C Dom(F).

Remark

Assume U = (up, i™ w) is a Fraissé sequence in &. Then K has the
joint embedding property and F = {i": n < m < w} is dominating in {.
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Cofinality

Theorem

Assume U = (up, i7", w) is a Fraissé sequence in a category with

amalgamation &. Then for every sequence X in R there exists an arrow
f: X — 0.

(s
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Homogeneity and Uniqueness

Theorem

Assume that U = (Up, i, w), V = (Vm, j7,w) are Fraissé sequences in
a fixed category R.
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Homogeneity and Uniqueness

Theorem

Assume that U = (Up, i, w), V = (Vm, j7,w) are Fraissé sequences in
a fixed category R.

(a) Letf: ux — vy, where k, ¢ < w. Then there exists an isomorphism
F: U — Vsuchthat Foix=jof. Inparticular i~ v.
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Homogeneity and Uniqueness

Theorem

Assume that U = (Up, i, w), V = (Vm, j7,w) are Fraissé sequences in

a fixed category R.

(a) Letf: ux — vy, where k, ¢ < w. Then there exists an isomorphism
F: U — VsuchthatFo i = jyof. Inparticulart ~ v.

(b) Assume 8] has the amalgamation property. Then for every a,b € £
and for every arrows f: a— b, i: a— U, j: b — V there exists an
isomorphism F: i — vV such that Foi=jof.
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Homogeneity and Uniqueness

Theorem
Assume that U = (Up, i, w), V = (Vm, j7,w) are Fraissé sequences in
a fixed category R.

(a) Letf: ux — vy, where k, ¢ < w. Then there exists an isomorphism
F: U — VsuchthatFo i = jyof. Inparticulart ~ v.

(b) Assume 8] has the amalgamation property. Then for every a,b € £
and for every arrows f: a— b, i: a— U, j: b — V there exists an
isomorphism F: i — vV such that Foi=jof.
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Example 1: Reversing the arrows

Let R be the category described as follows:
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Example 1: Reversing the arrows

Let R be the category described as follows:
@ Objects of R are finite linearly ordered sets.

(s

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 18/23




Example 1: Reversing the arrows

Let R be the category described as follows:
@ Objects of R are finite linearly ordered sets.
e fe R(P, Q) iff f: Q — Pis an order preserving surjection.
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Example 1: Reversing the arrows

Let R be the category described as follows:
@ Objects of R are finite linearly ordered sets.
e fe R(P, Q) iff f: Q — Pis an order preserving surjection.

Claim
R has the amalgamation property.
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Example 1: Reversing the arrows

Let R be the category described as follows:
@ Objects of R are finite linearly ordered sets.
e fe &(P,Q)iff f: Q— Pis an order preserving surjection.

Claim
R has the amalgamation property.

Theorem
R has a Fraissé sequence

Py — Py «— P — ...

whose limit is the Cantor set with the standard linear ordering.
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Example 2: Countable linear orders

Let R be the category whose objects are countable linear orders (P, <)
and arrows are left-invertible order preserving maps.
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Example 2: Countable linear orders

Let R be the category whose objects are countable linear orders (P, <)
and arrows are left-invertible order preserving maps.
Thatis: f: (P,<) — (Q, =) is an arrow in 8 if

@ fis order preserving, i.e. x <y = f(x) < f(y);
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Example 2: Countable linear orders

Let R be the category whose objects are countable linear orders (P, <)
and arrows are left-invertible order preserving maps.
Thatis: f: (P,<) — (Q, =) is an arrow in 8 if

@ fis order preserving,i.e. x <y = f(x) < f(y);

@ there is an order preserving map g: (Q, <) — (P, <) such that
gof=idp.

(s

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 19/23




Example 2: Countable linear orders

Let R be the category whose objects are countable linear orders (P, <)
and arrows are left-invertible order preserving maps.
Thatis: f: (P,<) — (Q, =) is an arrow in 8 if

@ fis order preserving,i.e. x <y = f(x) < f(y);

@ there is an order preserving map g: (Q, <) — (P, <) such that
gof=idp.

Necessarily f is one-to-one.
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Example 2: Countable linear orders

Let R be the category whose objects are countable linear orders (P, <)
and arrows are left-invertible order preserving maps.
Thatis: f: (P,<) — (Q, =) is an arrow in 8 if
@ fis order preserving,i.e. x <y = f(x) < f(y);
@ there is an order preserving map g: (Q, <) — (P, <) such that
gof=idp.

Necessarily f is one-to-one.

Lemma
R has the amalgamation property. J
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Lemma

Letm: Q — Q- Q be defined by 7(q) = (q,0). Then {r} is a
dominating family of arrows in f.
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Lemma

Letm: Q — Q- Q be defined by 7(q) = (q,0). Then {r} is a

dominating family of arrows in f.

Theorem

£ has a Fraissé sequence U = (up, i",w) such that each uy, is

isomorphic to Q and each i" is isomorphic to .
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Example 3: Retractive pairs

Fix a category &. Denote by 1R the following category:
@ The objects of {8 are the same as the objects of R.
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Example 3: Retractive pairs

Fix a category &. Denote by 1R the following category:
@ The objects of {8 are the same as the objects of R.

o feir(ab)iff f=(r,e),wherer: b— aand e: a— b are arrows
of R such that ro e = id,.
We shall write r(f) = r, e(f) = e.
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Example 3: Retractive pairs

Fix a category &. Denote by 1R the following category:
@ The objects of 1R are the same as the objects of ].

o feir(ab)iff f=(r,e),wherer: b— aand e: a— b are arrows
of R such that r o e = id,.
We shall write r(f) =r, e(f) = e.

@ Given compatible arrows f, g in {8, their composition is

gf = (r(f) or(g), e(g) o e(f)).
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Claim
If 8 has pullbacks then 1R has the amalgamation property. J
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Claim
If & has pullbacks then 1R has the amalgamation property.

Proof.
f f
7 r(f) X e(f) 7
e(g)
e(g) Y
Y r(g)
r(9)
f f
7 r(f) X e(f) 7
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Claim
If 8 has pullbacks then 1R has the amalgamation property. )
Proof.
f f
7 r(f) x e(f) 7
e(9)
e(9) Y
r(9)
fy v f
r(f) X e(f) 7
]
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Claim

If & has pullbacks then 1R has the amalgamation property.

Proof.
r(f) e(f)
Z X Z
e(9)
e(9) Y
Y <T w r(9)
r(9) h
r(f) e(f)
Z X Z
]
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Claim
If & has pullbacks then 1R has the amalgamation property.

Proof.
f f
7 r(f) x e(f) 7
idy e(g)
e(9) Y
Y<T w r(g)
r(9) h
f f
7 r(f) % e(f) 7
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Claim
If R has pullbacks then 1! has the amalgamation property.

Proof.
7~ Lo X&Z
le(g)
o). & Y
{/ﬂ w " r(9)
r(g)l () |
Lo f e
DJ
s
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