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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 2 / 23



Cantor’s back-and-forth method

Theorem (G. Cantor)
Let Q denote the set of rational numbers. Then:

Every countable linearly ordered set embeds into Q.
For every finite sets A,B ⊆ Q, every order preserving injection
f : A→ B extends to an order isomorphism F : Q→ Q.
Q is a unique (up to order isomorphism) countable linearly
ordered set with the above properties.

Corollary
Q is the unique countable dense linear order with no end-points.
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Proof.
Let Q =

⋃
n∈ω Qn, where each Qn is finite and Qn ⊆ Qn+1.

Let P =
⋃

n∈ω Pn be a linearly ordered set, where Pn ⊆ Pn+1 and
each Pn is finite.
Define inductively embeddings fn : Pn → Qkn so that fn+1 � Pn = fn.
Now assume P = Q and f : A→ B is given, where A,B ⊆ Qk0 .
Extend f to f1 : Qk0 → Qk1 , where k1 > k0.

Extend f−1
1 to a map g1 : Qk1 → Qk2 , where k2 > k1.

Extend g−1
1 to f2 : Qk2 → Qk3 , where k3 > k2.

And so on ...
...⋃

n∈ω fn is an isomorphism extending f .
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Theorem (R. Fraı̈ssé 1954)
Let M be a countable class of finitely generated models of a fixed
countable first-order language, satisfying the following conditions:

For every A,B ∈M there is C ∈M such that both A and B embed
into C. (Joint Embedding)
For every two embeddings f : E → A and g : E → B, where
E ,A,B ∈M, there exist D ∈M and embeddings f ′ : A→ D,
g′ : B → D such that f ′ ◦ f = g′ ◦ g. (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of
the same language such that:

Every A ∈M embeds into M.
For every embeddings f : A→ M and g : A→ B, where A,B ∈M,
there exists and embedding f : B → M such that f ◦ g = f .
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 5 / 23



Theorem (R. Fraı̈ssé 1954)
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Theorem (P.S. Urysohn 1927)
There exists a unique complete separable metric space U with the
following properties:

Every separable metric space is isometric to a subset of U.
For every finite sets A,B ⊆ U, every isometry f : A→ B extends to
an isometric bijection F : U→ U.
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 6 / 23



Theorem (P.S. Urysohn 1927)
There exists a unique complete separable metric space U with the
following properties:

Every separable metric space is isometric to a subset of U.
For every finite sets A,B ⊆ U, every isometry f : A→ B extends to
an isometric bijection F : U→ U.
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Categories

Let K be a category.
We say that K has the amalgamation property if for every arrows
f : Z → X and g : Z → Y there are arrows f ′ : X →W and
g′ : Y →W such that f ′ ◦ f = g′ ◦ g.

Y
g′ //W

Z

g

OO

f
// X

f ′
OO

If moreover for every other pair of arrows k : X → V and ` : Y → V
with k ◦ f = ` ◦ g there exists a unique arrow h : W → V such that

f ′ ◦ h = k and g′ ◦ h = `

then 〈f ′,g′〉 is called the pushout of 〈f ,g〉.
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Pushouts

The pushout of 〈f , g〉

Y
g′

//W

Z f
//

g

OO

X

f ′

OO

W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Cantor’s back-and-forth method UPEI, 26 March 2007 8 / 23



Pushouts

The pushout of 〈f , g〉

V

Y

`
11

g′
//W

Z f
//

g

OO

X

k

LL

f ′

OO
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Pushouts

The pushout of 〈f , g〉

V

Y

`
11

g′
//W

h

>>

Z f
//

g

OO

X

k

LL

f ′

OO
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Sequences

By a sequence in a category K we mean a functor ~x from
ω = {0,1, . . . } into K.
A sequence ~x can be described as {xn}n∈ω together with arrows
imn : xn → xm for n 6 m, such that

1 inn = idxn ,
2 k < ` < m =⇒ imk = im` ◦ i`k .

We shall write ~x = 〈xn, imn , ω〉.

Let ~x = 〈xn, imn , ω〉 and ~y = 〈yn, jmn , ω〉 be sequences in K.
A transformation of ~x into ~y is a pair 〈ϕ,~f 〉 such that

1 ϕ : ω → ω is increasing;
2 ~f = {fn}n∈ω, where fn : xn → yϕ(n);

3 n < m =⇒ fm ◦ imn = jϕ(m)
ϕ(n) ◦ fn.
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Arrows between sequences

Let ~x , ~y be sequences in K and let 〈ϕ,~f 〉, 〈ψ, ~g〉 be transformations
between them. We say that they are equivalent if all diagrams like

. . . // yϕ(n) // yψ(n) // . . . // yψ(m) // yϕ(m) // . . .

. . . // xn //
fn

ccHHHHHHHHH
gn

OO

. . . // xm //

gm

OO

fm

::uuuuuuuuu
. . .

are commutative.
An arrow of sequences ~x → ~y is an equivalence class of this
relation.
We write ~f : ~x → ~y , having in mind the equivalence class of a
transformation ~f = {fn}n∈ω.
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Let K be a fixed category.
A Fraı̈ssé sequence in K is a sequence ~u = 〈un, imn , ω〉 satisfying the
following conditions:
(U) For every x ∈ K there exists n ∈ ω such that K(x ,un) 6= ∅.

. . . // un // . . .

x
∃

>>

(A) For every n ∈ ω and for every arrow f ∈ K(un, y), where y ∈ K,
there exist m > n and g ∈ K(y ,um) such that imn = g ◦ f .

. . . // un
i?n //

f ��@
@@

@@
@@

@
. . .

y
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Dominating families of arrows

Let F be a set of arrows in K. Let Dom(F) = {dom(f ) : f ∈ F}.
We say that F is dominating in K if the following conditions are
satisfied:

(D1) For every x ∈ K there exists a ∈ Dom(F) such that K(x ,a) 6= ∅.

x // a

(D2) For every arrow g : a→ y in K with a ∈ Dom(F) there exist arrows
f ,h in K such that f ∈ F and f = h ◦ g.

a

g ��>
>>

>>
>>

y
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The existence

Theorem
Let K be a category which has the amalgamation property and the joint
embedding property. Assume further that F ⊆ Arr(K) is dominating in
K and |F| 6 ℵ0.
Then there exists a Fraı̈ssé sequence ~u = 〈un, imn , ω〉 in K such that
{un : n ∈ ω} ⊆ Dom(F).

Remark
Assume ~u = 〈un, imn , ω〉 is a Fraı̈ssé sequence in K. Then K has the
joint embedding property and F = {imn : n < m < ω} is dominating in K.
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Cofinality

Theorem
Assume ~u = 〈un, imn , ω〉 is a Fraı̈ssé sequence in a category with
amalgamation K. Then for every sequence ~x in K there exists an arrow
~f : ~x → ~u.
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Proof.

. . . // u`0 // . . . // . . .

x0

EE�������������
// x1 // . . . // . . .
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Proof.
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!!C
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C
// . . . // . . .

w
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==zzzzzzzz
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Proof.
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w
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Proof.
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Proof.
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x1 //
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w
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Homogeneity and Uniqueness

Theorem

Assume that ~u = 〈um, inm, ω〉, ~v = 〈vm, jnm, ω〉 are Fraı̈ssé sequences in
a fixed category K.
(a) Let f : uk → v`, where k , ` < ω. Then there exists an isomorphism

F : ~u → ~v such that F ◦ ik = j` ◦ f . In particular ~u ≈ ~v.
(b) Assume K has the amalgamation property. Then for every a,b ∈ K

and for every arrows f : a→ b, i : a→ ~u, j : b → ~v there exists an
isomorphism F : ~u → ~v such that F ◦ i = j ◦ f .

~u
F // ~v

uk

ik

OO

f // v`

j`

OO ~u
F // ~v

a

i

OO

f // b

j

OO
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isomorphism F : ~u → ~v such that F ◦ i = j ◦ f .

~u
F // ~v

uk

ik

OO

f // v`

j`

OO ~u
F // ~v

a

i

OO

f // b

j

OO
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The back-and-forth method

uk // . . .

v` //

f

OO

. . .
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The back-and-forth method

uk
g0

!!B
BB

BB
BB

B
// . . .

v` //

f

OO

v`1 // . . .
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The back-and-forth method

uk //

g0

  A
AA

AA
AA

A
uk1

// . . .

v` //

f

OO

v`1

f1
==||||||||

// . . .
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The back-and-forth method

uk //

g0

  A
AA

AA
AA

A
uk1

g1

!!C
CC

CC
CC

C
// . . .

v` //

f

OO

v`1 //
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v`2 // . . .
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The back-and-forth method

uk //

g0

  A
AA

AA
AA

A
uk1

//

g1

!!C
CC

CC
CC

C
uk2

// . . .

v` //

f

OO

v`1 //

f1
==||||||||

v`2

f2
==||||||||

// . . .
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The back-and-forth method

uk //

g0

  A
AA

AA
AA

A
uk1

//

g1

!!B
BB

BB
BB

B
uk2

//

g2

!!B
BB

BB
BB

B
. . .

v` //

f

OO

v`1 //

f1
==||||||||

v`2 //

f2
==||||||||

v`3 // . . .
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The back-and-forth method

uk //

g0

  A
AA

AA
AA

A
uk1

//

g1

!!B
BB

BB
BB

B
uk2

//

g2

!!B
BB

BB
BB

B
. . .

v` //

f

OO

v`1 //

f1
==||||||||

v`2 //

f2
==||||||||

v`3 //

>>|||||||||
. . .
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Example 1: Reversing the arrows

Let K be the category described as follows:
Objects of K are finite linearly ordered sets.
f ∈ K(P,Q) iff f : Q → P is an order preserving surjection.

Claim
K has the amalgamation property.

Theorem
K has a Fraı̈ssé sequence

P0 ← P1 ← P2 ← . . .

whose limit is the Cantor set with the standard linear ordering.
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Example 2: Countable linear orders

Let K be the category whose objects are countable linear orders 〈P,6〉
and arrows are left-invertible order preserving maps.
That is: f : 〈P,6〉 → 〈Q,�〉 is an arrow in K if

f is order preserving, i.e. x 6 y =⇒ f (x) � f (y);
there is an order preserving map g : 〈Q,�〉 → 〈P,6〉 such that
g ◦ f = idP .

Necessarily f is one-to-one.

Lemma
K has the amalgamation property.
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Lemma
Let π : Q→ Q ·Q be defined by π(q) = 〈q,0〉. Then {π} is a
dominating family of arrows in K.

Theorem
K has a Fraı̈ssé sequence ~u = 〈un, imn , ω〉 such that each un is
isomorphic to Q and each imn is isomorphic to π.
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Example 3: Retractive pairs

Fix a category K. Denote by ‡K the following category:
The objects of ‡K are the same as the objects of K.
f ∈ ‡K(a,b) iff f = 〈r ,e〉, where r : b → a and e : a→ b are arrows
of K such that r ◦ e = ida.
We shall write r(f ) = r , e(f ) = e.
Given compatible arrows f ,g in ‡K, their composition is

gf = 〈r(f ) ◦ r(g),e(g) ◦ e(f )〉.
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Claim
If K has pullbacks then ‡K has the amalgamation property.

Proof.

Z

e(g)

��

X
r(f )oo Z

e(f )oo

e(g)
��

Y

r(g)

��

Y

r(g)
��

Z X
r(f )oo Z

e(f )oo
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