Fraïssé sequences

Category-theoretic approach

Wiesław Kubiś

Instytut Matematyki Akademia Świętokrzyska Kielce, POLAND http://www.pu.kielce.pl/~wkubis/

UIUC, 27 February 2007

3 > 4 3

A >

Outline

- Valdivia compacta
- 2 Categories
- Fraïssé sequences
 - The existence
 - Linearly ordered Valdivia compacta revisited
 - Countable Fraïssé sequences
- Uncountable Fraïssé sequences
- Trees
- Valdivia compacta
- Retractive pairs
 - Banach spaces

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
 - Urysohn's universal metric space
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Universal compact spaces "generated" by retractions (Valdivia compacta)

A B b 4 B b

< 17 ▶

Fraïssé-Jónsson theory of universal homogeneous structures (1953)

- Cantor's back-and-forth method
- Urysohn's universal metric space
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Universal compact spaces "generated" by retractions (Valdivia compacta)

A B F A B F

< 🗇 🕨

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
 - Urysohn's universal metric space
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Universal compact spaces "generated" by retractions (Valdivia compacta)

A B F A B F

< 🗇 🕨

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
 - Urysohn's universal metric space
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Universal compact spaces "generated" by retractions (Valdivia compacta)

A B A A B A

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
 - Urysohn's universal metric space
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Universal compact spaces "generated" by retractions (Valdivia compacta)

A B F A B F

- Fraïssé-Jónsson theory of universal homogeneous structures (1953)
 - Cantor's back-and-forth method
 - Urysohn's universal metric space
- Work of Droste & Göbel (1989)
- Reversed Fraïssé limits: Irwin & Solecki (2005)
- Universal compact spaces "generated" by retractions (Valdivia compacta)

Valdivia compacta

A Valdivia compact is a closed set $K \subseteq [0, 1]^{\kappa}$ such that

 $K = \mathsf{cl}(K \cap \Sigma(\kappa)),$

where $\Sigma(\kappa) = \{ x \in [0, 1]^{\kappa} : |\{ \alpha : x(\alpha) \neq 0\}| \leq \aleph_0 \}.$

Theorem (H.Michalewski & W.K.)

A compact space K of weight \aleph_1 is Valdivia if and only if

 $K = \lim_{t \to 0} \vec{s},$

where $\vec{s} = \langle K_{\xi}, r_{\xi}^{\eta}, \omega_1 \rangle$ is a continuous inverse sequence of metric compacta in which all bonding maps r_{ξ}^{η} are retractions. (retraction = right-invertible map)

Valdivia compacta

A Valdivia compact is a closed set $K \subseteq [0, 1]^{\kappa}$ such that

 $K = \mathsf{cl}(K \cap \Sigma(\kappa)),$

where $\Sigma(\kappa) = \{ x \in [0, 1]^{\kappa} \colon |\{ \alpha \colon x(\alpha) \neq 0\}| \leqslant \aleph_0 \}.$

Theorem (H.Michalewski & W.K.)

A compact space K of weight \aleph_1 is Valdivia if and only if

 $K = \lim_{\leftarrow} \vec{s},$

where $\vec{s} = \langle K_{\xi}, r_{\xi}^{\eta}, \omega_1 \rangle$ is a continuous inverse sequence of metric compacta in which all bonding maps r_{ξ}^{η} are retractions. (retraction = right-invertible map)

A B F A B F

Example

The linearly ordered space $\omega_1 + 1$ is Valdivia compact.

Claim

Linearly ordered Valdivia compacta can have weight at most 81.

Theorem (W.K.)

There exists a zero-dimensional linearly ordered Valdivia compact C_{ω_1} which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

Example

The linearly ordered space $\omega_1 + 1$ is Valdivia compact.

Claim

Linearly ordered Valdivia compacta can have weight at most 81.

Theorem (W.K.)

There exists a zero-dimensional linearly ordered Valdivia compact C_{ω_1} which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

Example

The linearly ordered space $\omega_1 + 1$ is Valdivia compact.

Claim

Linearly ordered Valdivia compacta can have weight at most \aleph_1 .

Theorem (W.K.)

There exists a zero-dimensional linearly ordered Valdivia compact C_{ω_1} which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

Example

The linearly ordered space $\omega_1 + 1$ is Valdivia compact.

Claim

Linearly ordered Valdivia compacta can have weight at most X1.

Theorem (W.K.)

There exists a zero-dimensional linearly ordered Valdivia compact C_{ω_1} which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

A B A A B A

Categories

Let \Re be a category. We say that \Re has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g. If moreover for every other pair of arrows $k: X \to V$ and $\ell: Y \to V$ with $kf = \ell g$ there exists a unique arrow $h: W \to V$ such that the diagram

commutes, then $\langle f', g' \rangle$ is called the pushout of $\langle f, g \rangle$.

A B F A B F

Categories

Let \Re be a category. We say that \Re has the amalgamation property if for every arrows $f: Z \to X$ and $g: Z \to Y$ there are arrows $f': X \to W$ and $g': Y \to W$ such that f'f = g'g. If moreover for every other pair of arrows $k: X \to V$ and $\ell: Y \to V$ with $kf = \ell g$ there exists a unique arrow $h: W \to V$ such that the diagram

commutes, then $\langle f', g' \rangle$ is called the pushout of $\langle f, g \rangle$.

Cofinality and homogeneity

- A family \mathcal{F} of objects of \mathfrak{K} is said to be cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is $y \in \mathcal{F}$ such that $\mathfrak{K}(x, y) \neq \emptyset$.
- An object $u \in \mathfrak{K}$ is cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is an arrow $f: x \to u$ in \mathfrak{K} .
- Let L be a subcategory of R. An object u ∈ R is L-homogeneous if for every arrow f: a → b in L and for every arrows i: a → u, j: b → u in R there exists an isomorphism h: u → u such that the diagram

Cofinality and homogeneity

- A family \mathcal{F} of objects of \mathfrak{K} is said to be cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is $y \in \mathcal{F}$ such that $\mathfrak{K}(x, y) \neq \emptyset$.
- An object $u \in \mathfrak{K}$ is cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is an arrow $f: x \to u$ in \mathfrak{K} .
- Let \mathfrak{L} be a subcategory of \mathfrak{K} . An object $u \in \mathfrak{K}$ is \mathfrak{L} -homogeneous if for every arrow $f: a \to b$ in \mathfrak{L} and for every arrows $i: a \to u$, $j: b \to u$ in \mathfrak{K} there exists an isomorphism $h: u \to u$ such that the diagram

Cofinality and homogeneity

- A family \mathcal{F} of objects of \mathfrak{K} is said to be cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is $y \in \mathcal{F}$ such that $\mathfrak{K}(x, y) \neq \emptyset$.
- An object $u \in \mathfrak{K}$ is cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is an arrow $f: x \to u$ in \mathfrak{K} .
- Let 𝔅 be a subcategory of 𝔅. An object *u* ∈ 𝔅 is 𝔅-homogeneous if for every arrow *f*: *a* → *b* in 𝔅 and for every arrows *i*: *a* → *u*, *j*: *b* → *u* in 𝔅 there exists an isomorphism *h*: *u* → *u* such that the diagram

commutes.

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha < \lambda}$ together with arrows $i_{\alpha}^{\beta} : x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that

- $I i_{\alpha}^{\alpha} = \mathsf{id}_{x_{\alpha}}$

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$. Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

•
$$\varphi: \lambda \to \delta$$
 is increasing;

(2)
$$\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$$
, where $f_{\alpha} \colon x_{\alpha} \to y_{\varphi(\alpha)}$;

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha<\lambda}$ together with arrows $i_{\alpha}^{\beta} \colon x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that

- $I a_{\alpha}^{\alpha} = \mathsf{id}_{X_{\alpha}}$
- $a < \beta < \gamma \implies i_{\alpha}^{\gamma} = i_{\beta}^{\gamma} i_{\alpha}^{\beta}.$

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$. Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

(1)
$$\varphi: \lambda \to \delta$$
 is increasing;

(a)
$$\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$$
, where $f_{\alpha} \colon x_{\alpha} \to y_{\varphi(\alpha)}$;

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha<\lambda}$ together with arrows $i_{\alpha}^{\beta} \colon x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that **1** $j_{\alpha}^{\alpha} = id_{x_{\alpha}}$,

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$. Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

2)
$$\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$$
, where $f_{\alpha} \colon x_{\alpha} \to y_{\varphi(\alpha)};$

∃ ► < ∃ ►</p>

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha<\lambda}$ together with arrows $i_{\alpha}^{\beta} : x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that

$$\ \, \mathbf{i}^{\alpha}_{\alpha} = \mathsf{id}_{\mathbf{x}_{\alpha}}$$

 $\ 2 \ \ \alpha < \beta < \gamma \implies i_{\alpha}^{\gamma} = i_{\beta}^{\gamma} i_{\alpha}^{\beta}.$

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$.

Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

•
$$\varphi: \lambda \to \delta$$
 is increasing;

$$\ \ \, @ \ \ \, \vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}, \text{ where } f_{\alpha} \colon x_{\alpha} \to y_{\varphi(\alpha)};$$

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha<\lambda}$ together with arrows $i_{\alpha}^{\beta} : x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that

$$\ \, \mathbf{i}^{\alpha}_{\alpha} = \mathsf{id}_{\mathbf{x}_{\alpha}}$$

 $\ 2 \ \ \alpha < \beta < \gamma \implies i_{\alpha}^{\gamma} = i_{\beta}^{\gamma} i_{\alpha}^{\beta}.$

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$. Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

1
$$\varphi: \lambda \to \delta$$
 is increasing;

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha < \lambda}$ together with arrows $i_{\alpha}^{\beta} : x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that

$$\ \, \mathbf{i}^{\alpha}_{\alpha} = \mathsf{id}_{\mathbf{x}_{\alpha}}$$

 $\ 2 \ \ \alpha < \beta < \gamma \implies i_{\alpha}^{\gamma} = i_{\beta}^{\gamma} i_{\alpha}^{\beta}.$

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$. Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

•
$$\varphi \colon \lambda \to \delta$$
 is increasing;

2
$$\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$$
, where $f_{\alpha} : x_{\alpha} \to y_{\varphi(\alpha)}$;

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ into \Re . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{\alpha<\lambda}$ together with arrows $i_{\alpha}^{\beta}: x_{\alpha} \to x_{\beta}$ for $\alpha \leq \beta < \lambda$, such that

$$\ \, \mathbf{i}^{\alpha}_{\alpha} = \mathsf{id}_{\mathbf{x}_{\alpha}}$$

 $\ 2 \ \ \alpha < \beta < \gamma \implies i_{\alpha}^{\gamma} = i_{\beta}^{\gamma} i_{\alpha}^{\beta}.$

We shall write $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$. Let $\vec{x} = \langle x_{\alpha}, i_{\alpha}^{\beta}, \lambda \rangle$ and $\vec{y} = \langle y_{\alpha}, j_{\alpha}^{\beta}, \delta \rangle$ be sequences in \Re . A transformation of \vec{x} into \vec{y} is a pair $\langle \varphi, \vec{f} \rangle$ such that

1
$$\varphi: \lambda \to \delta$$
 is increasing;
2 $\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$, where $f_{\alpha}: x_{\alpha} \to y_{\varphi(\alpha)}$;
3 $\alpha < \beta \implies f_{\beta} i_{\alpha}^{\beta} = j_{\varphi(\alpha)}^{\varphi(\beta)} f_{\alpha}$.

Arrows between sequences

are commutative.

• An arrow of sequences $\vec{x} \to \vec{y}$ is an equivalence class of this relation. We write $\vec{f} : \vec{x} \to \vec{y}$, having in mind the equivalence class of a transformation $\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Arrows between sequences

are commutative.

• An arrow of sequences $\vec{x} \to \vec{y}$ is an equivalence class of this relation. We write $\vec{f} : \vec{x} \to \vec{y}$, having in mind the equivalence class of a transformation $\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$.

イロト 不得 トイヨト イヨト 三日

Let κ be a regular cardinal and let \Re be a category. We denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \Re of length $< \kappa$, with arrows of sequences defined above.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

 $\bigcirc \mathfrak{S}_{\kappa}(\mathfrak{K})$ is a κ -closed category containing \mathfrak{K} as a full subcategory.

Por every κ-closed category L, every covariant functor F: K→ L has a unique extension F': S_κ(K) → L to a κ-continuous functor.

Theorem

If $\mathfrak R$ has pushouts, then $\mathfrak S_\kappa(\mathfrak R)$ has the amalgamation property.

Let κ be a regular cardinal and let \Re be a category. We denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \Re of length $< \kappa$, with arrows of sequences defined above.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

• $\mathfrak{S}_{\kappa}(\mathfrak{K})$ is a κ -closed category containing \mathfrak{K} as a full subcategory.

Por every κ-closed category L, every covariant functor F: K→ L has a unique extension F': S_κ(K) → L to a κ-continuous functor.

Theorem

If $\mathfrak R$ has pushouts, then $\mathfrak S_\kappa(\mathfrak R)$ has the amalgamation property.

Let κ be a regular cardinal and let \Re be a category. We denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \Re of length $< \kappa$, with arrows of sequences defined above.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

0 $\mathfrak{S}_{\kappa}(\mathfrak{K})$ is a κ -closed category containing \mathfrak{K} as a full subcategory.

For every κ-closed category L, every covariant functor F: R→ L has a unique extension F': S_κ(R) → L to a κ-continuous functor.

Theorem

If $\mathfrak K$ has pushouts, then $\mathfrak S_\kappa(\mathfrak K)$ has the amalgamation property.

Let κ be a regular cardinal and let \Re be a category. We denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \Re of length $< \kappa$, with arrows of sequences defined above.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

- **0** $\mathfrak{S}_{\kappa}(\mathfrak{K})$ is a κ -closed category containing \mathfrak{K} as a full subcategory.
- Por every κ-closed category L, every covariant functor F: ℜ → L has a unique extension F': 𝔅_κ(ℜ) → L to a κ-continuous functor.

Theorem

If $\mathfrak K$ has pushouts, then $\mathfrak S_\kappa(\mathfrak K)$ has the amalgamation property.

Let κ be a regular cardinal and let \Re be a category. We denote by $\mathfrak{S}_{\kappa}(\mathfrak{K})$ the category of all sequences in \Re of length $< \kappa$, with arrows of sequences defined above.

A category \mathfrak{L} is κ -closed if sequences of length $< \kappa$ have colimits in \mathfrak{L} .

Theorem

- **0** $\mathfrak{S}_{\kappa}(\mathfrak{K})$ is a κ -closed category containing \mathfrak{K} as a full subcategory.
- Por every κ-closed category L, every covariant functor F: ℜ → L has a unique extension F': 𝔅_κ(ℜ) → L to a κ-continuous functor.

Theorem

If \mathfrak{K} has pushouts, then $\mathfrak{S}_{\kappa}(\mathfrak{K})$ has the amalgamation property.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition:

Let \mathfrak{K} be a fixed category. A κ -Fraïssé sequence in \mathfrak{K} is an inductive sequence $\vec{u} = \langle u_{\xi}, i_{\xi}^{\eta}, \kappa \rangle$ satisfying the following conditions: (U) For every $x \in \mathfrak{K}$ there exists $\xi < \kappa$ such that $\mathfrak{K}(x, u_{\xi}) \neq \emptyset$.

(A) For every $\xi < \kappa$ and for every arrow $f \in \Re(u_{\xi}, y)$, where $y \in \Re$, there exist $\eta \ge \xi$ and $g \in \Re(y, u_{\eta})$ such that $i_{\xi}^{\eta} = gf$.

Definition:

Let \mathfrak{K} be a fixed category. A κ -Fraïssé sequence in \mathfrak{K} is an inductive sequence $\vec{u} = \langle u_{\xi}, I_{\xi}^{\eta}, \kappa \rangle$ satisfying the following conditions:

(U) For every $x \in \mathfrak{K}$ there exists $\xi < \kappa$ such that $\mathfrak{K}(x, u_{\xi}) \neq \emptyset$.

(A) For every $\xi < \kappa$ and for every arrow $f \in \Re(u_{\xi}, y)$, where $y \in \Re$, there exist $\eta \ge \xi$ and $g \in \Re(y, u_{\eta})$ such that $i_{\xi}^{\eta} = gf$.

Definition:

Let \Re be a fixed category. A κ -Fraïssé sequence in \Re is an inductive sequence $\vec{u} = \langle u_{\xi}, i_{\xi}^{\eta}, \kappa \rangle$ satisfying the following conditions:

(U) For every $x \in \mathfrak{K}$ there exists $\xi < \kappa$ such that $\mathfrak{K}(x, u_{\xi}) \neq \emptyset$.

(A) For every $\xi < \kappa$ and for every arrow $f \in \mathfrak{K}(u_{\xi}, y)$, where $y \in \mathfrak{K}$, there exist $\eta \ge \xi$ and $g \in \mathfrak{K}(y, u_{\eta})$ such that $i_{\xi}^{\eta} = gf$.

Definition:

Let \Re be a fixed category. A κ -Fraïssé sequence in \Re is an inductive sequence $\vec{u} = \langle u_{\xi}, i_{\xi}^{\eta}, \kappa \rangle$ satisfying the following conditions:

(U) For every $x \in \mathfrak{K}$ there exists $\xi < \kappa$ such that $\mathfrak{K}(x, u_{\xi}) \neq \emptyset$.

(A) For every $\xi < \kappa$ and for every arrow $f \in \mathfrak{K}(u_{\xi}, y)$, where $y \in \mathfrak{K}$, there exist $\eta \ge \xi$ and $g \in \mathfrak{K}(y, u_{\eta})$ such that $i_{\xi}^{\eta} = gf$.

< 回 > < 回 > < 回 > -

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D1) For every $x \in \mathfrak{K}$ there exists $a \in \text{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

x → *a*

(D2) For every arrow $g: a \to y$ in \Re with $a \in \text{Dom}(\mathcal{F})$ there exist arrows f, h in \Re such that $f \in \mathcal{F}$ and f = hg.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\text{Dom}(\mathcal{F}) = \{\text{dom}(f) \colon f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied: (D1) For every $x \in \mathfrak{K}$ there exists $a \in \text{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

x → *a*

(D2) For every arrow $g: a \to y$ in \Re with $a \in \text{Dom}(\mathcal{F})$ there exist arrows f, h in \Re such that $f \in \mathcal{F}$ and f = hg.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K} . Let $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D1) For every $x \in \mathfrak{K}$ there exists $a \in \text{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

(D2) For every arrow $g: a \to y$ in \Re with $a \in \text{Dom}(\mathcal{F})$ there exist arrows f, h in \Re such that $f \in \mathcal{F}$ and f = hg.

The existence

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{u} \to a$.

Theorem

Let $\kappa > 1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \operatorname{Arr}(\Re)$ is dominating in \Re and $|\mathcal{F}| \leq \kappa$. Then there exists a Fraïssé sequence $\vec{u} = \langle u_{\xi}, i_{\xi}^{\eta}, \kappa \rangle$ in \Re such that $\{u_{\alpha} : \alpha < \kappa\} \subseteq \operatorname{Dom}(\mathcal{F})$.

- A TE N - A TE N

The existence

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{u} \to a$.

Theorem

Let $\kappa > 1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \operatorname{Arr}(\Re)$ is dominating in \Re and $|\mathcal{F}| \leq \kappa$. Then there exists a Fraïssé sequence $\vec{u} = \langle u_{\xi}, i_{\xi}^{\eta}, \kappa \rangle$ in \Re such that $\{u_{\alpha} : \alpha < \kappa\} \subseteq \operatorname{Dom}(\mathcal{F})$.

Denote by \mathfrak{LV}_0 the category whose objects are nonempty 0-dimensional metric linearly ordered compacta and arrows are increasing retractions.

Claim

The dual category $\mathfrak{LV}_0^{\leftarrow}$ has the amalgamation property.

Let *C* be the Cantor set with the standard linear order. Let $\pi: C \to C$ be the (unique) increasing surjection such that

- π⁻¹(p) is order isomorphic to the Cantor set whenever p ∈ C is rational,
- $|\pi^{-1}(p)| = 1$ whenever $p \in C$ is not rational.

Denote by \mathfrak{LV}_0 the category whose objects are nonempty 0-dimensional metric linearly ordered compacta and arrows are increasing retractions.

Claim

The dual category $\mathfrak{LV}_0^{\leftarrow}$ has the amalgamation property.

Let *C* be the Cantor set with the standard linear order. Let $\pi: C \to C$ be the (unique) increasing surjection such that

- π⁻¹(p) is order isomorphic to the Cantor set whenever p ∈ C is rational,
- $|\pi^{-1}(p)| = 1$ whenever $p \in C$ is not rational.

Denote by \mathfrak{LV}_0 the category whose objects are nonempty 0-dimensional metric linearly ordered compacta and arrows are increasing retractions.

Claim

The dual category $\mathfrak{LV}_0^{\leftarrow}$ has the amalgamation property.

Let *C* be the Cantor set with the standard linear order. Let $\pi: C \to C$ be the (unique) increasing surjection such that

π⁻¹(p) is order isomorphic to the Cantor set whenever p ∈ C is rational,

•
$$|\pi^{-1}(p)| = 1$$
 whenever $p \in C$ is not rational.

Denote by \mathfrak{LV}_0 the category whose objects are nonempty 0-dimensional metric linearly ordered compacta and arrows are increasing retractions.

Claim

The dual category $\mathfrak{LV}_0^{\leftarrow}$ has the amalgamation property.

Let *C* be the Cantor set with the standard linear order. Let $\pi: C \to C$ be the (unique) increasing surjection such that

- π⁻¹(p) is order isomorphic to the Cantor set whenever p ∈ C is rational,
- $|\pi^{-1}(p)| = 1$ whenever $p \in C$ is not rational.

$\mathfrak{LV}_0^{\leftarrow}$ has both an \aleph_0 - and an \aleph_1 -Fraïssé sequence.

In fact:

Theorem

Let $\vec{c} = \langle C_{\xi}, \pi_{\xi}^{\eta}, \omega_1 \rangle$ be the inverse sequence in \mathfrak{LV}_0 described by the following conditions:

• $C_{\xi} \approx C$ and $\pi_{\xi}^{\xi+1} \approx \pi$ for every $\xi < \omega_1$.

• *c* is continuous with respect to the category of all compact spaces.

$$C_{\omega_1} = \varprojlim \vec{c}$$

in the category of all linearly ordered compact spaces. Then C_{ω_1} is a linearly ordered Valdivia compact which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

 $\mathfrak{LV}_0^{\leftarrow}$ has both an \aleph_0 - and an \aleph_1 -Fraïssé sequence.

In fact:

Theorem

Let $\vec{c} = \langle C_{\xi}, \pi^{\eta}_{\xi}, \omega_1 \rangle$ be the inverse sequence in \mathfrak{LV}_0 described by the following conditions:

• $C_{\xi} \approx C$ and $\pi_{\xi}^{\xi+1} \approx \pi$ for every $\xi < \omega_1$.

• *c* is continuous with respect to the category of all compact spaces. et

$$C_{\omega_1} = \varprojlim \vec{c}$$

in the category of all linearly ordered compact spaces. Then C_{ω_1} is a linearly ordered Valdivia compact which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

э

 $\mathfrak{LV}_0^{\leftarrow}$ has both an \aleph_0 - and an \aleph_1 -Fraïssé sequence.

In fact:

Theorem

Let $\vec{c} = \langle C_{\xi}, \pi^{\eta}_{\xi}, \omega_1 \rangle$ be the inverse sequence in \mathfrak{LV}_0 described by the following conditions:

•
$$C_{\xi} \approx C$$
 and $\pi_{\xi}^{\xi+1} \approx \pi$ for every $\xi < \omega_1$.

• \vec{c} is continuous with respect to the category of all compact spaces. Let

$$C_{\omega_1} = \varprojlim \vec{c}$$

in the category of all linearly ordered compact spaces. Then C_{ω_1} is a linearly ordered Valdivia compact which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

イロト イヨト イヨト イヨト

 $\mathfrak{LV}_0^{\leftarrow}$ has both an \aleph_0 - and an \aleph_1 -Fraïssé sequence.

In fact:

Theorem

Let $\vec{c} = \langle C_{\xi}, \pi^{\eta}_{\xi}, \omega_1 \rangle$ be the inverse sequence in \mathfrak{LV}_0 described by the following conditions:

• $C_{\xi} \approx C$ and $\pi_{\xi}^{\xi+1} \approx \pi$ for every $\xi < \omega_1$.

• \vec{c} is continuous with respect to the category of all compact spaces. Let

$$C_{\omega_1} = \varprojlim \vec{c}$$

in the category of all linearly ordered compact spaces. Then C_{ω_1} is a linearly ordered Valdivia compact which maps increasingly onto any other nonempty linearly ordered Valdivia compact.

э

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Countable Fraïssé sequences

Theorem (Countable Cofinality)

Assume $\vec{u} = \langle u_{\alpha}, i_{\alpha}^{\beta}, \kappa \rangle$ is a Fraïssé sequence in a category with amalgamation \mathfrak{K} . Then for every countable sequence \vec{x} in \mathfrak{K} there exists an arrow $\vec{f} : \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} satisfies amalgamation then \vec{u} is cofinal in $\mathfrak{S}_{\aleph_1}(\mathfrak{K})$.

< 回 > < 回 > < 回 >

Countable Fraïssé sequences

Theorem (Countable Cofinality)

Assume $\vec{u} = \langle u_{\alpha}, i_{\alpha}^{\beta}, \kappa \rangle$ is a Fraïssé sequence in a category with amalgamation \mathfrak{K} . Then for every countable sequence \vec{x} in \mathfrak{K} there exists an arrow $\vec{f} : \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} satisfies amalgamation then \vec{u} is cofinal in $\mathfrak{S}_{\aleph_1}(\mathfrak{K})$.

Homogeneity & Uniqueness

Theorem

Assume that $\vec{u} = \langle u_m, i_m^n, \omega \rangle$, $\vec{v} = \langle v_m, j_m^n, \omega \rangle$ are Fraïssé sequences in a fixed category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $Fi_k = j_\ell f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume ℜ has the amalgamation property. Then for every a, b ∈ ℜ and for every arrows f: a → b, i: a → ū, j: b → v there exists an isomorphism F: ū → v such that Fi = jf.

A B F A B F

Uncountable Fraïssé sequences

Theorem

Let $\kappa > \aleph_0$ be regular and assume that \Re is a full and cofinal subcategory of a κ -closed category \mathfrak{L} . If \mathfrak{L} has the amalgamation property, then:

- There exists, up to equivalence of sequences, at most one κ-Fraïssé sequence in κ.

Uncountable Fraïssé sequences

Theorem

Let $\kappa > \aleph_0$ be regular and assume that \Re is a full and cofinal subcategory of a κ -closed category \mathfrak{L} . If \mathfrak{L} has the amalgamation property, then:

- There exists, up to equivalence of sequences, at most one κ-Fraïssé sequence in κ.

The Sec. 74

Uncountable Fraïssé sequences

Theorem

Let $\kappa > \aleph_0$ be regular and assume that \Re is a full and cofinal subcategory of a κ -closed category \mathfrak{L} . If \mathfrak{L} has the amalgamation property, then:

- There exists, up to equivalence of sequences, at most one κ-Fraïssé sequence in κ.
- A κ-Fraïssé sequence in R is also a Fraïssé sequence in L and it is both L-homogeneous and G_{κ+}(L)-cofinal.

モトイモト

Let $\kappa > \aleph_0$ be regular and let \Re be a category. Assume at least one of the following conditions is satisfied:

- **③** $\mathfrak{S}_{\kappa}(\mathfrak{K})$ has the amalgamation property.
- Then a possible κ -Fraïssé sequence in ${\mathfrak K}$ is
 - unique,
 - $\mathfrak{S}_{\kappa}(\mathfrak{K})$ -homogeneous,
 - $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ -cofinal.

A (10) A (10)

Let $\kappa > \aleph_0$ be regular and let \Re be a category. Assume at least one of the following conditions is satisfied:

- A has pushouts.
- **③** $\mathfrak{S}_{\kappa}(\mathfrak{K})$ has the amalgamation property.

Then a possible κ -Fraïssé sequence in \Re is

- unique,
- $\mathfrak{S}_{\kappa}(\mathfrak{K})$ -homogeneous,
- $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ -cofinal.

A (10) A (10)

Let $\kappa > \aleph_0$ be regular and let \Re be a category. Assume at least one of the following conditions is satisfied:

- A has pushouts.
- **③** $\mathfrak{S}_{\kappa}(\mathfrak{K})$ has the amalgamation property.

Then a possible κ -Fraïssé sequence in \Re is

- unique,
- $\mathfrak{S}_{\kappa}(\mathfrak{K})$ -homogeneous,
- $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ -cofinal.

A B A A B A

< 4 →

Let $\kappa > \aleph_0$ be regular and let \Re be a category. Assume at least one of the following conditions is satisfied:

- A has pushouts.
- **③** $\mathfrak{S}_{\kappa}(\mathfrak{K})$ has the amalgamation property.

Then a possible κ -Fraïssé sequence in \Re is

- unique,
- $\mathfrak{S}_{\kappa}(\mathfrak{K})$ -homogeneous,
- $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ -cofinal.

3 + 4 = +

A tree $\langle T, \leqslant \rangle$ is bounded if for every $x \in T$ there is $y \in max(T)$ such that $x \leqslant y$.

Let \mathfrak{T}_2 be the following category:

- Objects are bounded countable binary trees.
- Arrows are tree embeddings *f* : *T* → *S* such that *f*[*T*] is a closed initial segment of *S*.

Claim

 \mathfrak{T}_2 has the amalgamation property.

A tree T is healthy if

- every $x \in T \setminus \max(T)$ has two immediate successors,
- all maximal elements of *T* are on the top level of *T*.

A (10) A (10)

A tree $\langle T, \leqslant \rangle$ is bounded if for every $x \in T$ there is $y \in max(T)$ such that $x \leqslant y$.

Let \mathfrak{T}_2 be the following category:

Objects are bounded countable binary trees.

Arrows are tree embeddings *f* : *T* → *S* such that *f*[*T*] is a closed initial segment of *S*.

Claim

 \mathfrak{T}_2 has the amalgamation property.

A tree T is healthy if

- every $x \in T \setminus \max(T)$ has two immediate successors,
- all maximal elements of *T* are on the top level of *T*.

A (10) A (10)

A tree $\langle T, \leqslant \rangle$ is bounded if for every $x \in T$ there is $y \in \max(T)$ such that $x \leqslant y$.

Let \mathfrak{T}_2 be the following category:

- Objects are bounded countable binary trees.
- Arrows are tree embeddings *f*: *T* → *S* such that *f*[*T*] is a closed initial segment of *S*.

Claim

 \mathfrak{T}_2 has the amalgamation property.

A tree T is healthy if

- every $x \in T \setminus \max(T)$ has two immediate successors,
- all maximal elements of *T* are on the top level of *T*.

< 回 > < 三 > < 三 >

A tree $\langle T, \leqslant \rangle$ is bounded if for every $x \in T$ there is $y \in \max(T)$ such that $x \leqslant y$.

Let \mathfrak{T}_2 be the following category:

- Objects are bounded countable binary trees.
- Arrows are tree embeddings *f* : *T* → *S* such that *f*[*T*] is a closed initial segment of *S*.

Claim

 \mathfrak{T}_2 has the amalgamation property.

A tree T is healthy if

- every $x \in T \setminus \max(T)$ has two immediate successors,
- all maximal elements of *T* are on the top level of *T*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A tree $\langle T, \leqslant \rangle$ is bounded if for every $x \in T$ there is $y \in max(T)$ such that $x \leqslant y$.

Let \mathfrak{T}_2 be the following category:

- Objects are bounded countable binary trees.
- Arrows are tree embeddings *f* : *T* → *S* such that *f*[*T*] is a closed initial segment of *S*.

Claim

 \mathfrak{T}_2 has the amalgamation property.

A tree T is healthy if

- every $x \in T \setminus \max(T)$ has two immediate successors,
- all maximal elements of *T* are on the top level of *T*.

Theorem

Let U be a healthy binary tree of height ω_1 and let $\vec{u} = \{U_\alpha\}_{\alpha < \omega_1}$ be its natural \mathfrak{T}_2 -decomposition. Then \vec{u} is a Fraïssé sequence in \mathfrak{T}_2 .

Theorem

Let \vec{u} , \vec{v} be \aleph_1 -Fraïssé sequences in \mathfrak{T}_2 , induced by healthy trees U, V respectively. Let \vec{f} : $\vec{u} \to \vec{v}$ be an arrow of sequences. Then the induced tree embedding f_{ω_1} : $U \to V$ is an isomorphism.

Corollary

 \mathfrak{T}_2 has at least two incomparable \aleph_1 -Fraïssé sequences.

Theorem

Let U be a healthy binary tree of height ω_1 and let $\vec{u} = \{U_\alpha\}_{\alpha < \omega_1}$ be its natural \mathfrak{T}_2 -decomposition. Then \vec{u} is a Fraïssé sequence in \mathfrak{T}_2 .

Theorem

Let \vec{u} , \vec{v} be \aleph_1 -Fraïssé sequences in \mathfrak{T}_2 , induced by healthy trees U, V respectively. Let $\vec{f} : \vec{u} \to \vec{v}$ be an arrow of sequences. Then the induced tree embedding $f_{\omega_1} : U \to V$ is an isomorphism.

Corollary

 \mathfrak{T}_2 has at least two incomparable \aleph_1 -Fraïssé sequences.

Theorem

Let U be a healthy binary tree of height ω_1 and let $\vec{u} = \{U_\alpha\}_{\alpha < \omega_1}$ be its natural \mathfrak{T}_2 -decomposition. Then \vec{u} is a Fraïssé sequence in \mathfrak{T}_2 .

Theorem

Let \vec{u} , \vec{v} be \aleph_1 -Fraïssé sequences in \mathfrak{T}_2 , induced by healthy trees U, V respectively. Let $\vec{f} : \vec{u} \to \vec{v}$ be an arrow of sequences. Then the induced tree embedding $f_{\omega_1} : U \to V$ is an isomorphism.

Corollary

 \mathfrak{T}_2 has at least two incomparable \aleph_1 -Fraïssé sequences.

Let $\mathfrak{V}\mathfrak{d}$ be the following category:

- The objects of $\mathfrak{V}\mathfrak{d}$ are nonempty metric compacta.
- An arrow from $X \in \mathfrak{Vl}$ to $Y \in \mathfrak{Vl}$ is a retraction $r: Y \to X$.

Claim

ชเง has the amalgamation property.

Claim

 \mathfrak{V} ເວ is \aleph_1 -bounded.

Theorem

 $CH \implies \mathfrak{V}\mathfrak{l}\mathfrak{d}$ has an \aleph_1 -Fraïssé sequence.

< 🗇 > < 🖻 > < 🖻

Let $\mathfrak{V}\mathfrak{V}\mathfrak{d}$ be the following category:

- The objects of $\mathfrak{V}\mathfrak{d}$ are nonempty metric compacta.
- An arrow from $X \in \mathfrak{Vl}$ to $Y \in \mathfrak{Vl}$ is a retraction $r: Y \to X$.

Claim

ชเจ has the amalgamation property.

Claim

 \mathfrak{V} ເປີ is \aleph_1 -bounded.

Theorem

 $CH \implies \mathfrak{V}\mathfrak{l}\mathfrak{d}$ has an \aleph_1 -Fraïssé sequence.

< 🗇 > < 🖻 > < 🖻

Let $\mathfrak{V}\mathfrak{V}\mathfrak{d}$ be the following category:

- The objects of $\mathfrak{V}\mathfrak{d}$ are nonempty metric compacta.
- An arrow from $X \in \mathfrak{Vl}$ to $Y \in \mathfrak{Vl}$ is a retraction $r: Y \to X$.

Claim

no has the amalgamation property.

Claim

 \mathfrak{V} ເປີ is \aleph_1 -bounded.

Theorem

 $CH \implies \mathfrak{V}\mathfrak{l}\mathfrak{d}$ has an \aleph_1 -Fraïssé sequence.

< 回 > < 三 > < 三 >

Let $\mathfrak{V}\mathfrak{d}$ be the following category:

- The objects of $\mathfrak{V}\mathfrak{d}$ are nonempty metric compacta.
- An arrow from $X \in \mathfrak{Vl}$ to $Y \in \mathfrak{Vl}$ is a retraction $r: Y \to X$.

Claim

no has the amalgamation property.

Claim

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ is \aleph_1 -bounded.

Theorem

 ${\it CH} \implies \mathfrak{V}$ ເວ has an $leph_1$ -Fraïssé sequence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Valdivia compacta

Let $\mathfrak{V}\mathfrak{d}$ be the following category:

- The objects of $\mathfrak{V}\mathfrak{W}$ are nonempty metric compacta.
- An arrow from $X \in \mathfrak{Vl}$ to $Y \in \mathfrak{Vl}$ is a retraction $r: Y \to X$.

Claim

no has the amalgamation property.

Claim

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ is \aleph_1 -bounded.

Theorem

 $CH \implies \mathfrak{Vl} has an \aleph_1$ -Fraïssé sequence.

A B A A B A

< 17 ▶

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ is not \aleph_1 -closed.

Claim

າງເປັ does not have pushouts.

Question

So how to show the cofinality of an \aleph_1 -Fraïssé sequence in \mathfrak{VD} ?

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ is not \aleph_1 -closed.

Claim

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ does not have pushouts.

Question

So how to show the cofinality of an \aleph_1 -Fraïssé sequence in \mathfrak{VD} ?

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ is not \aleph_1 -closed.

Claim

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ does not have pushouts.

Question

So how to show the cofinality of an \aleph_1 -Fraïssé sequence in \mathfrak{VD} ?

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ is not \aleph_1 -closed.

Claim

 $\mathfrak{V}\mathfrak{l}\mathfrak{d}$ does not have pushouts.

Question

So how to show the cofinality of an \aleph_1 -Fraïssé sequence in \mathfrak{VD} ?

Let $F : \mathfrak{V}\mathfrak{l} \to \mathfrak{Comp}^{\leftarrow}$ be the natural functor. Then:

- Under CH, there exists an \aleph_1 -Fraïssé sequence \vec{u} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{u}]$ is continuous.
- Let *K* be a Valdivia compact of weight \aleph_1 . Then there is a sequence \vec{x} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{x}]$ is continuous and $K = \lim F[\vec{x}]$.

Claim

Let $f: X \to Z$, $g: Y \to Z$ be continuous surjections between compact spaces and assume f is a retraction. Then there are a compact W and continuous surjections $f': W \to X$, $g': W \to Y$ such that the diagram

Let $F : \mathfrak{V}\mathfrak{l} \to \mathfrak{Comp}^{\leftarrow}$ be the natural functor. Then:

- Under CH, there exists an \aleph_1 -Fraïssé sequence \vec{u} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{u}]$ is continuous.
- Let *K* be a Valdivia compact of weight \aleph_1 . Then there is a sequence \vec{x} in $\mathfrak{V}\mathfrak{W}$ such that $F[\vec{x}]$ is continuous and $K = \lim F[\vec{x}]$.

Claim

Let $f: X \to Z$, $g: Y \to Z$ be continuous surjections between compact spaces and assume f is a retraction. Then there are a compact W and continuous surjections $f': W \to X$, $g': W \to Y$ such that the diagram

Let $F : \mathfrak{V}\mathfrak{l} \to \mathfrak{Comp}^{\leftarrow}$ be the natural functor. Then:

- Under CH, there exists an \aleph_1 -Fraïssé sequence \vec{u} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{u}]$ is continuous.
- Let *K* be a Valdivia compact of weight \aleph_1 . Then there is a sequence \vec{x} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{x}]$ is continuous and $K = \lim F[\vec{x}]$.

Claim

Let $f: X \to Z$, $g: Y \to Z$ be continuous surjections between compact spaces and assume f is a retraction. Then there are a compact W and continuous surjections $f': W \to X$, $g': W \to Y$ such that the diagram

Let $F : \mathfrak{V}\mathfrak{l} \to \mathfrak{Comp}^{\leftarrow}$ be the natural functor. Then:

- Under CH, there exists an \aleph_1 -Fraïssé sequence \vec{u} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{u}]$ is continuous.
- Let *K* be a Valdivia compact of weight \aleph_1 . Then there is a sequence \vec{x} in $\mathfrak{V}\mathfrak{V}$ such that $F[\vec{x}]$ is continuous and $K = \lim F[\vec{x}]$.

Claim

Let $f: X \to Z$, $g: Y \to Z$ be continuous surjections between compact spaces and assume f is a retraction. Then there are a compact W and continuous surjections $f': W \to X$, $g': W \to Y$ such that the diagram

The above claim says that:

The functor F: 𝔅𝔅 → 𝔅omp[←] has the amalgamation property, i.e. for every x, y, z ∈ 𝔅𝔅 for every arrow f: z → x in 𝔅𝔅 and for every arrow g: F(z) → F(y) in 𝔅omp[←] there exist w ∈ 𝔅𝔅, an arrow h: F(x) → F(w) in 𝔅omp[←] and an arrow k: y → w in 𝔅𝔅 such that the diagram

$$F(y) \xrightarrow{F(k)} F(w)$$

$$g \mid \qquad \uparrow h$$

$$F(z) \xrightarrow{F(f)} F(x)$$

commutes.

イベト イモト イモト

The above claim says that:

The functor F: 𝔅𝔅 → 𝔅omp[←] has the amalgamation property, i.e. for every x, y, z ∈ 𝔅𝔅 for every arrow f: z → x in 𝔅𝔅 and for every arrow g: F(z) → F(y) in 𝔅omp[←] there exist w ∈ 𝔅𝔅, an arrow h: F(x) → F(w) in 𝔅omp[←] and an arrow k: y → w in 𝔅𝔅 such that the diagram

$$F(y) \xrightarrow{F(k)} F(w)$$

$$g^{\uparrow} \qquad \uparrow h$$

$$F(z) \xrightarrow{F(f)} F(x)$$

commutes.

A (10) A (10)

Theorem

Let $\kappa > \aleph_0$ be a regular cardinal and let $\Phi \colon \mathfrak{K} \to \mathfrak{L}$ be a covariant functor with amalgamation. Assume that

- $\Phi[\vec{u}]$ is continuous in \mathfrak{L} .

Then for every sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\mathfrak{K})$ such that $\Phi[\vec{x}]$ is continuous in \mathfrak{L} , there exists an arrow $\vec{f} : \Phi[\vec{x}] \to \Phi[\vec{u}]$ in $\mathfrak{S}_{\kappa^+}(\mathfrak{L})$.

Theorem

Let $\kappa > \aleph_0$ be a regular cardinal and let $\Phi \colon \mathfrak{K} \to \mathfrak{L}$ be a covariant functor with amalgamation. Assume that

- ū is a κ-Fraïssé sequence in κ;
- $\Phi[\vec{u}]$ is continuous in \mathfrak{L} .

Then for every sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\mathfrak{K})$ such that $\Phi[\vec{x}]$ is continuous in \mathfrak{L} , there exists an arrow $\vec{f} : \Phi[\vec{x}] \to \Phi[\vec{u}]$ in $\mathfrak{S}_{\kappa^+}(\mathfrak{L})$.

We say that a functor $\Phi: \mathfrak{K} \to \mathfrak{L}$ does not add isomorphisms if for every isomorphism $h: \Phi(a) \to \Phi(b)$ in \mathfrak{L} there is an isomorphism h' in \mathfrak{K} such that $h = \Phi(h')$.

Theorem

Let $\Phi: \mathfrak{K} \to \mathfrak{L}$ be a faithful covariant functor which does not add isomorphisms. Further, let \vec{u} and \vec{v} be κ -Fraïssé sequences in \mathfrak{K} such that $\Phi[\vec{u}]$ and $\Phi[\vec{v}]$ are continuous in \mathfrak{L} . Then for every arrows $f: a \to b, i: a \to \vec{u}$ and $j: b \to \vec{v}$ in \mathfrak{K} there exists an isomorphism of sequences $\vec{h}: \vec{u} \to \vec{v}$ in $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ for which the diagram

commutes. In particular, $\vec{u} \approx \vec{v}$.

4 **A** N A **B** N A **B** N

We say that a functor $\Phi: \mathfrak{K} \to \mathfrak{L}$ does not add isomorphisms if for every isomorphism $h: \Phi(a) \to \Phi(b)$ in \mathfrak{L} there is an isomorphism h' in \mathfrak{K} such that $h = \Phi(h')$.

Theorem

Let $\Phi: \mathfrak{K} \to \mathfrak{L}$ be a faithful covariant functor which does not add isomorphisms. Further, let \vec{u} and \vec{v} be κ -Fraïssé sequences in \mathfrak{K} such that $\Phi[\vec{u}]$ and $\Phi[\vec{v}]$ are continuous in \mathfrak{L} . Then for every arrows $f: a \to b, i: a \to \vec{u}$ and $j: b \to \vec{v}$ in \mathfrak{K} there exists an isomorphism of sequences $\vec{h}: \vec{u} \to \vec{v}$ in $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ for which the diagram

commutes. In particular, $\vec{u} \approx \vec{v}$.

3

・日・ ・ ヨ ・ ・ ヨ ・

We say that a functor $\Phi: \mathfrak{K} \to \mathfrak{L}$ does not add isomorphisms if for every isomorphism $h: \Phi(a) \to \Phi(b)$ in \mathfrak{L} there is an isomorphism h' in \mathfrak{K} such that $h = \Phi(h')$.

Theorem

Let $\Phi: \mathfrak{K} \to \mathfrak{L}$ be a faithful covariant functor which does not add isomorphisms. Further, let \vec{u} and \vec{v} be κ -Fraïssé sequences in \mathfrak{K} such that $\Phi[\vec{u}]$ and $\Phi[\vec{v}]$ are continuous in \mathfrak{L} . Then for every arrows $f: a \to b, i: a \to \vec{u}$ and $j: b \to \vec{v}$ in \mathfrak{K} there exists an isomorphism of sequences $\vec{h}: \vec{u} \to \vec{v}$ in $\mathfrak{S}_{\kappa^+}(\mathfrak{K})$ for which the diagram

commutes. In particular, $\vec{u} \approx \vec{v}$.

A (10) A (10)

Corollary

Assume CH. There exists a Valdivia compact K such that:

- The weight of K is \aleph_1 .
- Every metric compact is a retract of K.
- Every nonempty Valdivia compact of weight ≤ ℵ₁ is a continuous image of K.
- For every retractions r: X → Y, k: K → X and l: K → Y, where X, Y are metric compacta, there exists a homeomorphism h: K → K such that

commutes.

Moreover, the above properties describe K uniquely.

Corollary

Assume CH. There exists a Valdivia compact K such that:

- The weight of K is \aleph_1 .
- Every metric compact is a retract of K.
- Every nonempty Valdivia compact of weight ≤ ℵ₁ is a continuous image of K.
- For every retractions r: X → Y, k: K → X and l: K → Y, where X, Y are metric compacta, there exists a homeomorphism h: K → K such that

commutes.

Moreover, the above properties describe K uniquely.

イロト 不得 トイヨト イヨト

Remark

If $\mathfrak{V}\mathfrak{D}$ has an \aleph_1 -Fraïssé sequence then CH holds.

Question

Assume CH and let K be the Valdivia compact from the above corollary. Is every Valdivia compact of weight \aleph_1 a retract of K?

э

・ロン ・回 と ・ ヨン

Remark

If $\mathfrak{V}\mathfrak{D}$ has an \aleph_1 -Fraïssé sequence then CH holds.

Question

Assume CH and let K be the Valdivia compact from the above corollary. Is every Valdivia compact of weight \aleph_1 a retract of K?

< 回 > < 回 > < 回 >

Fix a category \mathfrak{K} . Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of ‡R are the same as the objects of R.
- Given a, b ∈ ‡𝔅, an arrow f: a → b in ‡𝔅 is a pair f = ⟨r, e⟩, where r: b → a and e: a → b are arrows of 𝔅 such that re = id_a.
 We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

 $gf = \langle r(f)r(g), e(g)e(f) \rangle.$

Claim

If R has pullbacks or pushouts then 1R has the amalgamation property.

Fix a category \mathfrak{K} . Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of ‡R are the same as the objects of R.
- Given $a, b \in \ddagger \Re$, an arrow $f : a \to b$ in $\ddagger \Re$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \Re such that $re = id_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

 $gf = \langle r(f)r(g), e(g)e(f) \rangle.$

Claim

If R has pullbacks or pushouts then 1R has the amalgamation property.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix a category \mathfrak{K} . Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of ‡R are the same as the objects of R.
- Given $a, b \in \ddagger \Re$, an arrow $f : a \to b$ in $\ddagger \Re$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \Re such that $re = id_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

$$gf = \langle r(f)r(g), e(g)e(f) \rangle.$$

Claim

If R has pullbacks or pushouts then 1R has the amalgamation property.

Fix a category \mathfrak{K} . Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of $\ddagger \Re$ are the same as the objects of \Re .
- Given $a, b \in \ddagger \Re$, an arrow $f : a \to b$ in $\ddagger \Re$ is a pair $f = \langle r, e \rangle$, where $r : b \to a$ and $e : a \to b$ are arrows of \Re such that $re = id_a$. We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in $\ddagger \Re$, their composition is

$$gf = \langle r(f)r(g), e(g)e(f) \rangle.$$

Claim

If \Re has pullbacks or pushouts then $\ddagger \Re$ has the amalgamation property.

< 回 > < 三 > < 三 >

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \Re$.

We say that arrows $h: X \to W, k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that ‡R has proper amalgamations if every pair of arrows of ‡R with the same domain can be properly amalgamated.

(日本) (日本) (日本) 日本

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \Re$. We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that ‡R has proper amalgamations if every pair of arrows of ‡R with the same domain can be properly amalgamated.

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \Re$. We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that \ddagger has proper amalgamations if every pair of arrows of \ddagger with the same domain can be properly amalgamated.

Let $f: Z \to X$ and $g: Z \to Y$ be arrows in $\ddagger \Re$. We say that arrows $h: X \to W$, $k: Y \to W$ provide a proper amalgamation of f, g if hf = kg and moreover i(g)r(f) = r(k)i(h), i(f)r(g) = r(h)i(k) hold.

We say that $\ddagger \Re$ has proper amalgamations if every pair of arrows of $\ddagger \Re$ with the same domain can be properly amalgamated.

If \mathfrak{K} has pullbacks or pushouts then $\ddagger \mathfrak{K}$ has proper amalgamations.

3 + 4 = +

If \mathfrak{K} has pullbacks or pushouts then $\ddagger \mathfrak{K}$ has proper amalgamations.

Given a category \mathfrak{K} , let $\Phi : \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$.

We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in $\ddagger \Re$. Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger \Re)$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \Re$.

Corollary

Assume CH. Then there exists a Valdivia compact K of weight \aleph_1 such that every nonempty Valdivia compact of weight $\leqslant \aleph_1$ is a retract of K.

Given a category \Re , let $\Phi: \ddagger \Re \to \Re$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \Re$. We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \Re)$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in $\ddagger \Re$. Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger \Re)$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \Re$.

Corollary

Assume CH. Then there exists a Valdivia compact K of weight \aleph_1 such that every nonempty Valdivia compact of weight $\leqslant \aleph_1$ is a retract of K.

Given a category \mathfrak{K} , let $\Phi: \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$. We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in $\ddagger \Re$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger\mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger\mathfrak{K}$.

Corollary

Assume CH. Then there exists a Valdivia compact K of weight \aleph_1 such that every nonempty Valdivia compact of weight $\leqslant \aleph_1$ is a retract of K.

Given a category \mathfrak{K} , let $\Phi: \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$. We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in $\ddagger \Re$. Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger \Re)$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \Re$.

Corollary

Assume CH. Then there exists a Valdivia compact K of weight \aleph_1 such that every nonempty Valdivia compact of weight $\leqslant \aleph_1$ is a retract of K.

イロト イポト イヨト イヨト

Given a category \mathfrak{K} , let $\Phi: \ddagger \mathfrak{K} \to \mathfrak{K}$ be the contravariant "forgetful" functor, i.e. $\Phi(f) = r(f)$ for every arrow f in $\ddagger \mathfrak{K}$. We shall say that a sequence $\vec{x} \in \mathfrak{S}_{\lambda}(\ddagger \mathfrak{K})$ is semi-continuous if $\Phi[\vec{x}]$ is continuous.

Theorem

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in $\ddagger \Re$. Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\kappa^+}(\ddagger \Re)$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \Re$.

Corollary

Assume CH. Then there exists a Valdivia compact K of weight \aleph_1 such that every nonempty Valdivia compact of weight $\leqslant \aleph_1$ is a retract of K.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Banach spaces

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm $\leqslant 1$.

Claim

 \mathfrak{B}_{\aleph_0} has pushouts and is \aleph_1 -closed.

Theorem

Under CH there exists a Banach space E of density ℵ1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.

< 回 > < 三 > < 三 >
Banach spaces

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm $\leqslant 1$.

Claim

 \mathfrak{B}_{\aleph_0} has pushouts and is \aleph_1 -closed.

Theorem

Under CH there exists a Banach space E of density &1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.

< ロ > < 同 > < 回 > < 回 >

Banach spaces

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm $\leqslant 1$.

Claim

 \mathfrak{B}_{\aleph_0} has pushouts and is \aleph_1 -closed.

Theorem

Under CH there exists a Banach space E of density \aleph_1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Banach spaces

Let \mathfrak{B}_{\aleph_0} be the category of separable Banach spaces, with arrows being linear transformations of norm $\leqslant 1$.

Claim

 \mathfrak{B}_{\aleph_0} has pushouts and is \aleph_1 -closed.

Theorem

Under CH there exists a Banach space E of density \aleph_1 such that

- E has a projectional resolution of the identity (PRI);
- every Banach space of density ≤ ℵ₁ and with a PRI is linearly isometric to a one-complemented subspace of E.

A B F A B F

Selected bibliography

- DROSTE, M.; GÖBEL, R., A categorical theorem on universal objects and its application in abelian group theory and computer science, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 49–74, Contemp. Math., 131, Part 3, Amer. Math. Soc., Providence, RI, 1992.
- FRAÏSSÉ, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182.
- IRWIN, T.; SOLECKI, S., Projective Fraïssé limits and the pseudo-arc, Trans. Amer. Math. Soc. 358, no. 7 (2006) 3077–3096.
- JÓNSSON, B., Homogeneous universal relational systems, Math. Scand. 8 (1960) 137–142.

