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Motivation

Theorem (Sobczyk, 1941)
In a separable Banach space, every copy of c0 is complemented.

Theorem
There exists a Banach space Z of density ℵ1, containing an
uncomplemented copy of c0.
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Separable complementation properties

Definition
A Banach space X has the separable complementation property
(SCP) if for every separable set A ⊆ X there is a projection P : X → X
such that A ⊆ im P and im P is separable.

Fact
SCP =⇒ every copy of c0 is complemented.

Example
Weakly compactly generated Banach spaces have the SCP.
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Controlled SCP

Definition (Wójtowicz, Ferrer)
A Banach space X has the controlled SCP if for every countable sets
A ⊆ X , B ⊆ X ∗ there exists a projection P : X → X such that

im P is separable,
A ⊆ im P,
B ⊆ im P∗.

Example
Weakly compactly generated Banach spaces have the controlled SCP.
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Skeletons

Definition
A skeleton in a Banach space X is a family F consisting of closed
separable subspaces, satisfying:

1 X =
⋃

F

2 E ,F ∈ F =⇒ (∃ G ∈ F ) E + F ⊆ G
3 Given a chain E0 ⊆ E1 ⊆ E2 ⊆ · · · in F , the space cl(

⋃
n∈ω En) is

in F (continuity)

Definition
A Banach space has the continuous SCP if it has a skeleton consisting
of complemented subspaces.

Example
WCG Banach spaces have the continuous SCP.
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The smallest non-separable C(K ) spaces

t K should be scattered of a very low height.
t K should be “almost” metrizable.

Remark
If K is scattered of height 1 then C(K ) ≈ c0(|K |).

Conclusion:
K should be of the form L ∪ {∞}, where L is first countable, of height 2
and of cardinality ℵ1.
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Almost disjoint families

Definition
A family of sets A is almost disjoint if

1 Each A ∈ A is countable infinite.
2 A ∩ B is finite whenever A,B ∈ A are different.

Definition
Let A be an almost disjoint family with X =

⋃
A . Define KA to be the

Stone space of the Boolean algebra generated by

A ∪ [X ]<ω ⊆P(X ).
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Alternative description

KA := X ∪A ∪ {∞}

with the topology defined by the following conditions:
All points of X =

⋃
A are isolated.

A basic neighborhood of A ∈ A is

UF (A) := {A} ∪ (A \ F ),

where F ⊆ A is finite.
A basic neighborhood of∞ is

UF (∞) := K \
⋃

A∈F

U∅(A),

where F ⊆ A is finite.
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Fact
The space KA is scattered compact of height 3 and KA \ {∞} is first
countable.

Fact
A scattered compact K of height 3 such that K ′′ is a singleton and
K \ K ′′ is first countable is homeomorphic to KA for some almost
disjoint family A .

Spaces KA were studied first by Alexandrov and Urysohn in 1929,
later by Mrówka and others.
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Theorem (Sobczyk + Whitley + ?)
Let K be a compactification of N. If the canonical copy of c0 is
complemented in C(K ) then K \ N carries a strictly positive Radon
measure.

Corollary
Let A be an uncountable almost disjoint family with N =

⋃
A . Then

the canonical copy of c0 is not complemented in C(KA ).
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Main result I

Definition
A compact space K is monolithic if separable subsets of K are second
countable.

Fact
Let E be a Banach space with the controlled SCP. Then the dual unit
ball BE∗ is monolithic.

Theorem
Let A be an almost disjoint family. Then C(KA ) has the controlled
SCP if and only if KA is monolithic.
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Main result II

Theorem
There exists an almost disjoint family A ⊆ [ω1]

ω such that
1 |A | = ℵ1,
2 C(KA ) has the continuous 2-SCP,
3 KA is not monolithic; in fact A ⊆ cl[0, ω) in KA .

W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Ladder systems and SCP 17 January 2012 13 / 20



Main result II

Theorem
There exists an almost disjoint family A ⊆ [ω1]

ω such that
1 |A | = ℵ1,
2 C(KA ) has the continuous 2-SCP,
3 KA is not monolithic; in fact A ⊆ cl[0, ω) in KA .
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Ladder systems

Definition
Fix S ⊆ ω1 consisting of limit ordinals only. A ladder system based on
S is a sequence

C = {cδ}δ∈S

such that for each δ ∈ S:
1 cδ ⊆ [0, δ),
2 cδ has order type ω,
3 sup cδ = δ,

W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Ladder systems and SCP 17 January 2012 14 / 20



Ladder systems

Definition
Fix S ⊆ ω1 consisting of limit ordinals only. A ladder system based on
S is a sequence

C = {cδ}δ∈S

such that for each δ ∈ S:
1 cδ ⊆ [0, δ),
2 cδ has order type ω,
3 sup cδ = δ,
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Stationary sets

Definition
A set S ⊆ ω1 is stationary if S ∩ C 6= ∅ whenever C ⊆ ω1 is closed and
unbounded.

Theorem (Pol, 1979)
Let C = {cδ}δ∈S be a ladder system, where S ⊆ ω1 is stationary. Then
KC is not Eberlein compact, yet C(KC ) is weakly Lindelöf.

Proposition
Let C = {cδ}δ∈S be a ladder system with S non-stationary. Then C is
equivalent to a disjoint family and C(KC ) ≈ c0(ω1).
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Projectional skeletons

Definition
A projectional skeleton in a Banach space X is a pair (F ,P), where
F is a skeleton of separable subspaces of X and P = {PE}E∈F is
such that for each E ,F ∈ F :

1 PE is a projection onto E ,
2 E ⊆ F =⇒ PE ◦ PF = PE = PF ◦ PE .

Fact
t supE∈F ‖PE‖ < +∞.
t There is a renorming of X such that ‖PE‖ = 1 for every E ∈ F ,

E 6= 0.
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Fact
Projectional skeleton =⇒ continuous SCP =⇒ SCP.

Proposition
Every Banach space with the continuous 1-SCP and of density ℵ1 has
a projectional skeleton.

Fact
SCP =⇒ (∃ k ∈ N) k-SCP.

Theorem (O. Kalenda and W.K., 2012)
Continuous SCP 6=⇒ (∃ k ∈ N) continuous k-SCP.
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Main result III

Theorem
Let C = {cδ}δ∈S be a ladder system with S ⊆ ω1 stationary. Then
C(KC ) has the continuous (and controlled) 2-SCP, yet it does not have
a projectional skeleton.

Corollary
Continuous 2-SCP does not imply the existence of a projectional
skeleton.

This answers a question from

O. KALENDA, W. KUBIŚ, Complementation in spaces of
continuous functions on compact lines, J. Math. Anal. Appl. 386
(2012) 241–257
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Main result IV

Theorem
Let A be an almost disjoint family of countable sets with |A | = ℵ1 and
assume KA is monolithic. Then

either A is equivalent to a disjoint family, or else
there exist B ⊆ A and a stationary set S ⊆ ω1 such that B is
equivalent to a ladder system based on S.

In other words:
either KA is a “standard” Eberlein compact of height 3 and
C(KA ) ≈ c0(ω1), or else
or else C(KA ) has an isometric copy of C(KC ), where
C = {cδ}δ∈S is a ladder system and S ⊆ ω1 is stationary.
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