A general approach to universal homogeneous structures

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC) and Jan Kochanowski University, Kielce (POLAND) http://www.pu.kielce.pl/~wkubis/

Madrid 14 December 2011

Outline

- The history
- Roland Fraïssé and his work
- Gurarii space

- Fraïssé sequences
 - Back-and-forth argument
 - Universality
- 6 Banach spaces
 - Valdivia compacta
- 8 Further topics

- A - TH

< A >

Some history

Theorem (Cantor 1895)

The set of rational numbers $\langle \mathbb{Q}, < \rangle$ is the unique countable linearly ordered set whose ordering is dense and has no end-points.

Proof.

Back-and-forth argument (developed by Huntington 1904 and Hausdorff 1914).

Some history

Theorem (Cantor 1895)

The set of rational numbers $\langle \mathbb{Q}, < \rangle$ is the unique countable linearly ordered set whose ordering is dense and has no end-points.

Proof.

Back-and-forth argument (developed by Huntington 1904 and Hausdorff 1914).

Urysohn's space

Theorem (P.S. Urysohn 1924)

There exists a unique complete separable metric space $\mathbb U$ satisfying the following conditions:

- Every separable metric space embeds isometrically into U.
- Every isometry between finite subsets of U extends to a bijective isometry of U.

The space $\mathbb U$ is called the Urysohn space.

4 3 5 4 3 5

< 6 b

Urysohn's space

Theorem (P.S. Urysohn 1924)

There exists a unique complete separable metric space $\mathbb U$ satisfying the following conditions:

- Every separable metric space embeds isometrically into U.
- Every isometry between finite subsets of U extends to a bijective isometry of U.

The space $\mathbb U$ is called the Urysohn space.

イロト イポト イラト イラト

Urysohn's space

Theorem (P.S. Urysohn 1924)

There exists a unique complete separable metric space $\mathbb U$ satisfying the following conditions:

- Every separable metric space embeds isometrically into U.
- ② Every isometry between finite subsets of U extends to a bijective isometry of U.

The space \mathbb{U} is called the Urysohn space.

Roland Fraïssé (1920 - 2008)

A French mathematician working mostly in logic, set theory (theory of relations). One of his important works is the Fraïssé limit construction in model theory:

 Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182

The setup:

A class \mathscr{F} of finitely-generated models of a fixed first-order language.

Assumptions:

- If $X \in \mathscr{F}$ and Y is a submodel of X then $Y \in \mathscr{F}$.
- Given $X, Y \in \mathcal{F}$, there is $Z \in \mathcal{F}$ such that both X and Y embed into Z.
- Given *X*, *Y* ∈ *F* with *Z* = *X* ∩ *Y* ∈ *F* there exist *W* ∈ *F* and embeddings *f* : *X* → *W*, *g* : *Y* → *W* such that

$$f \upharpoonright Z = g \upharpoonright Z.$$

Definition

Such a family \mathcal{F} is called a Fraïssé class.

The setup:

A class \mathscr{F} of finitely-generated models of a fixed first-order language.

Assumptions:

- If $X \in \mathscr{F}$ and Y is a submodel of X then $Y \in \mathscr{F}$.
- For Given $X, Y \in \mathcal{F}$, there is $Z \in \mathcal{F}$ such that both X and Y embed into Z.
- If Given *X*, *Y* ∈ *F* with *Z* = *X* ∩ *Y* ∈ *F* there exist *W* ∈ *F* and embeddings *f* : *X* → *W*, *g* : *Y* → *W* such that

$$f \upharpoonright Z = g \upharpoonright Z.$$

Definition

Such a family \mathcal{F} is called a Fraïssé class.

The setup:

A class \mathscr{F} of finitely-generated models of a fixed first-order language.

Assumptions:

- If $X \in \mathscr{F}$ and Y is a submodel of X then $Y \in \mathscr{F}$.
- Given $X, Y \in \mathscr{F}$, there is $Z \in \mathscr{F}$ such that both X and Y embed into Z.
- Given *X*, *Y* ∈ *F* with *Z* = *X* ∩ *Y* ∈ *F* there exist *W* ∈ *F* and embeddings *f* : *X* → *W*, *g* : *Y* → *W* such that

$$f \upharpoonright Z = g \upharpoonright Z.$$

Definition

Such a family \mathcal{F} is called a Fraïssé class.

The setup:

A class \mathscr{F} of finitely-generated models of a fixed first-order language.

Assumptions:

- If $X \in \mathscr{F}$ and Y is a submodel of X then $Y \in \mathscr{F}$.
- Given $X, Y \in \mathcal{F}$, there is $Z \in \mathcal{F}$ such that both X and Y embed into Z.
- Given $X, Y \in \mathscr{F}$ with $Z = X \cap Y \in \mathscr{F}$ there exist $W \in \mathscr{F}$ and embeddings $f: X \to W, g: Y \to W$ such that

$$f \upharpoonright Z = g \upharpoonright Z.$$

Definition

Such a family \mathcal{F} is called a Fraïssé class.

The setup:

A class \mathscr{F} of finitely-generated models of a fixed first-order language.

Assumptions:

- If $X \in \mathscr{F}$ and Y is a submodel of X then $Y \in \mathscr{F}$.
- Given $X, Y \in \mathscr{F}$, there is $Z \in \mathscr{F}$ such that both X and Y embed into Z.
- Given $X, Y \in \mathscr{F}$ with $Z = X \cap Y \in \mathscr{F}$ there exist $W \in \mathscr{F}$ and embeddings $f: X \to W, g: Y \to W$ such that

$$f \upharpoonright Z = g \upharpoonright Z.$$

Definition

Such a family \mathscr{F} is called a Fraïssé class.

Let \mathscr{F} be a class of finitely-generated models. Denote by $\overline{\mathscr{F}}$ the class of all countable models that can be written as $\bigcup_{n \in \mathbb{N}} X_n$, where $X_n \in \mathscr{F}$ for every $n \in \mathbb{N}$.

Given a countable model M, denote by Age (M) the class of all finitely-generated models isomorphic to submodels of M.

Theorem (Fraïssé 1954)

Let \mathscr{F} be a Fraïssé class with countably many isomorphic types. Then there exists a unique model $U \in \overline{\mathscr{F}}$ satisfying the following conditions.

- Age $(U) = \mathcal{F}$.
- ② Given models X ⊆ Y in ℱ, for every embedding f : X → U there exists an embedding g : Y → U such that g ↾ X = f.

Notation: $U = Flim(\mathscr{F})$, the Fraïssé limit of \mathscr{F} .

< ロ > < 同 > < 回 > < 回 >

Let \mathscr{F} be a class of finitely-generated models. Denote by $\overline{\mathscr{F}}$ the class of all countable models that can be written as $\bigcup_{n \in \mathbb{N}} X_n$, where $X_n \in \mathscr{F}$ for every $n \in \mathbb{N}$.

Given a countable model M, denote by Age (M) the class of all finitely-generated models isomorphic to submodels of M.

Theorem (Fraïssé 1954)

Let \mathscr{F} be a Fraïssé class with countably many isomorphic types. Then there exists a unique model $U \in \overline{\mathscr{F}}$ satisfying the following conditions.

• Age
$$(U) = \mathcal{F}$$
.

② Given models X ⊆ Y in ℱ, for every embedding f : X → U there exists an embedding g : Y → U such that g ↾ X = f.

Notation: $U = Flim(\mathscr{F})$, the Fraïssé limit of \mathscr{F} .

Let \mathscr{F} be a class of finitely-generated models. Denote by $\overline{\mathscr{F}}$ the class of all countable models that can be written as $\bigcup_{n \in \mathbb{N}} X_n$, where $X_n \in \mathscr{F}$ for every $n \in \mathbb{N}$.

Given a countable model M, denote by Age (M) the class of all finitely-generated models isomorphic to submodels of M.

Theorem (Fraïssé 1954)

Let \mathscr{F} be a Fraïssé class with countably many isomorphic types. Then there exists a unique model $U \in \overline{\mathscr{F}}$ satisfying the following conditions.

• Age $(U) = \mathscr{F}$.

② Given models X ⊆ Y in ℱ, for every embedding f : X → U there exists an embedding g : Y → U such that g ↾ X = f.

Notation: $U = Flim(\mathscr{F})$, the Fraïssé limit of \mathscr{F} .

Let \mathscr{F} be a class of finitely-generated models. Denote by $\overline{\mathscr{F}}$ the class of all countable models that can be written as $\bigcup_{n \in \mathbb{N}} X_n$, where $X_n \in \mathscr{F}$ for every $n \in \mathbb{N}$.

Given a countable model M, denote by Age (M) the class of all finitely-generated models isomorphic to submodels of M.

Theorem (Fraïssé 1954)

Let \mathscr{F} be a Fraïssé class with countably many isomorphic types. Then there exists a unique model $U \in \mathscr{F}$ satisfying the following conditions.

② Given models X ⊆ Y in ℱ, for every embedding f: X → U there exists an embedding g: Y → U such that g ↾ X = f.

Notation: $U = Flim(\mathcal{F})$, the Fraïssé limit of \mathcal{F} .

イロト 不得 トイヨト イヨト

Let \mathscr{F} be a class of finitely-generated models. Denote by $\overline{\mathscr{F}}$ the class of all countable models that can be written as $\bigcup_{n \in \mathbb{N}} X_n$, where $X_n \in \mathscr{F}$ for every $n \in \mathbb{N}$.

Given a countable model M, denote by Age (M) the class of all finitely-generated models isomorphic to submodels of M.

Theorem (Fraïssé 1954)

Let \mathscr{F} be a Fraïssé class with countably many isomorphic types. Then there exists a unique model $U \in \overline{\mathscr{F}}$ satisfying the following conditions.

• Age
$$(U) = \mathscr{F}$$
.

② Given models $X \subseteq Y$ in *ℱ*, for every embedding $f : X \to U$ there exists an embedding $g : Y \to U$ such that $g \upharpoonright X = f$.

Notation: $U = Flim(\mathscr{F})$, the Fraïssé limit of \mathscr{F} .

Let \mathscr{F} be a class of finitely-generated models. Denote by $\overline{\mathscr{F}}$ the class of all countable models that can be written as $\bigcup_{n \in \mathbb{N}} X_n$, where $X_n \in \mathscr{F}$ for every $n \in \mathbb{N}$.

Given a countable model M, denote by Age (M) the class of all finitely-generated models isomorphic to submodels of M.

Theorem (Fraïssé 1954)

Let \mathscr{F} be a Fraïssé class with countably many isomorphic types. Then there exists a unique model $U \in \mathscr{F}$ satisfying the following conditions.

• Age
$$(U) = \mathscr{F}$$
.

② Given models $X \subseteq Y$ in *ℱ*, for every embedding $f : X \to U$ there exists an embedding $g : Y \to U$ such that $g \upharpoonright X = f$.

Notation: $U = Flim(\mathscr{F})$, the Fraïssé limit of \mathscr{F} .

Let \mathscr{F} be a Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Then

- (a) For every isomorphism h: X → Y between finitely-generated submodels of U there exists an automorphism H: U → U such that H ↾ X = h.
- (b) For every $A \in \overline{\mathscr{F}}$ there exists an embedding $f \colon A \to U$.

Condition (a) is called ultra-homogeneity or \mathscr{F} -homogeneity. Condition (b) is universality.

イロト イポト イラト イラ

Let \mathscr{F} be a Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Then

- (a) For every isomorphism h: X → Y between finitely-generated submodels of U there exists an automorphism H: U → U such that H ↾ X = h.
- (b) For every $A \in \overline{\mathscr{F}}$ there exists an embedding $f : A \to U$.

Condition (a) is called ultra-homogeneity or \mathscr{F} -homogeneity. Condition (b) is universality.

Let \mathscr{F} be a Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Then

 (a) For every isomorphism h: X → Y between finitely-generated submodels of U there exists an automorphism H: U → U such that H ↾ X = h.

(b) For every $A \in \overline{\mathscr{F}}$ there exists an embedding $f : A \to U$.

Condition (a) is called ultra-homogeneity or \mathscr{F} -homogeneity. Condition (b) is universality.

Let \mathscr{F} be a Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Then

 (a) For every isomorphism h: X → Y between finitely-generated submodels of U there exists an automorphism H: U → U such that H ↾ X = h.

(b) For every $A \in \overline{\mathscr{F}}$ there exists an embedding $f : A \to U$.

Condition (a) is called ultra-homogeneity or \mathscr{F} -homogeneity. Condition (b) is universality.

イロト イポト イラト イラト

Typical examples

($\langle \mathbb{Q}, \langle \rangle = \mathsf{Flim}(\mathscr{L}), \text{ where } \mathscr{L} = \text{ all finite linear orderings. }$

- 2) The random graph is Flim(\mathscr{G}), where $\mathscr{G} =$ all finite graphs.
- The rational Urysohn space is Flim(*U*), where *U* is the class of all finite metric spaces with rational distances.

< 6 k

Typical examples

- **(** $\langle \mathbb{Q}, \langle \rangle = \mathsf{Flim}(\mathscr{L}), \text{ where } \mathscr{L} = \text{ all finite linear orderings. }$
- 2 The random graph is $Flim(\mathcal{G})$, where $\mathcal{G} = all$ finite graphs.
- The rational Urysohn space is Flim(*U*), where *U* is the class of all finite metric spaces with rational distances.

4 3 5 4 3

Typical examples

- **(** $\langle \mathbb{Q}, \langle \rangle = \mathsf{Flim}(\mathscr{L}), \text{ where } \mathscr{L} = \mathsf{all finite linear orderings.}$
- 2 The random graph is $Flim(\mathcal{G})$, where $\mathcal{G} = all$ finite graphs.
- The rational Urysohn space is Flim(*U*), where *U* is the class of all finite metric spaces with rational distances.

A related example

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(G) Given finite-dimensional spaces X ⊆ Y, given an isometric embedding f: X → G, given ε > 0, there exists an ε-isometric embedding f̄: Y → G such that f̄ ↾ X = f.

Theorem (Gurarii 1966)

The Gurarii space is almost homogeneous (but not homogeneous) with respect to finite-dimensional subspaces.

Theorem (Lusky 1976)

The Gurarii space is unique up to isometry.

A related example

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(G) Given finite-dimensional spaces X ⊆ Y, given an isometric embedding f: X → G, given ε > 0, there exists an ε-isometric embedding f̄: Y → G such that f̄ ↾ X = f.

Theorem (Gurarii 1966)

The Gurarii space is almost homogeneous (but not homogeneous) with respect to finite-dimensional subspaces.

Theorem (Lusky 1976)

The Gurarii space is unique up to isometry.

3

イロト 不得 トイヨト イヨト

A related example

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(G) Given finite-dimensional spaces X ⊆ Y, given an isometric embedding f: X → G, given ε > 0, there exists an ε-isometric embedding f̄: Y → G such that f̄ ↾ X = f.

Theorem (Gurarii 1966)

The Gurarii space is almost homogeneous (but not homogeneous) with respect to finite-dimensional subspaces.

Theorem (Lusky 1976)

The Gurarii space is unique up to isometry.

3

Uniqueness of the Gurarii space

Theorem (Solecki & K. 2011)

For every ε -isometry $f: X \to Y$ between finite-dimensional subspaces of separable Gurarii space G_1 , G_2 respectively, there exists a bijective isometry $h: G_1 \to G_2$ such that

$$\|h\upharpoonright X-f\|<\varepsilon.$$

Proof.

An "approximate" version of the back-and-forth argument, using a geometric lemma on "correcting" almost isometries.

A (10) A (10) A (10)

Uniqueness of the Gurarii space

Theorem (Solecki & K. 2011)

For every ε -isometry $f: X \to Y$ between finite-dimensional subspaces of separable Gurarii space G_1 , G_2 respectively, there exists a bijective isometry $h: G_1 \to G_2$ such that

$$\|h\upharpoonright X-f\|<\varepsilon.$$

Proof.

An "approximate" version of the back-and-forth argument, using a geometric lemma on "correcting" almost isometries.

< 回 > < 三 > < 三 >

Uniqueness of the Gurarii space

Theorem (Solecki & K. 2011)

For every ε -isometry $f: X \to Y$ between finite-dimensional subspaces of separable Gurarii space G_1 , G_2 respectively, there exists a bijective isometry $h: G_1 \to G_2$ such that

$$\|h\upharpoonright X-f\|<\varepsilon.$$

Proof.

An "approximate" version of the back-and-forth argument, using a geometric lemma on "correcting" almost isometries.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 🐲 1960 B. JÓNSSON: Uncountable Fraïssé limits in model theory.
- I989 M. DROSTE, R. GÖBEL: Jónsson's theory in the framework of category theory. Applications to algebra and domain theory.
- 2006 T. IRWIN, S. SOLECKI: Reversed Fraïssé theory for finite models.

Application to topology: the pseudo-arc.

A (1) > A (2) > A (2)

1960 B. JÓNSSON: Uncountable Fraïssé limits in model theory.

- 1989 M. DROSTE, R. GÖBEL: Jónsson's theory in the framework of category theory. Applications to algebra and domain theory.
- 2006 T. IRWIN, S. SOLECKI: Reversed Fraïssé theory for finite models.

Application to topology: the pseudo-arc.

不得る 不良る 不良る

- 1960 B. JÓNSSON: Uncountable Fraïssé limits in model theory.
- 1989 M. DROSTE, R. GÖBEL: Jónsson's theory in the framework of category theory.
 Applications to algebra and domain theory.
- 2006 T. IRWIN, S. SOLECKI: Reversed Fraïssé theory for finite models.

Application to topology: the pseudo-arc.

- A TE N - A TE N

- 1960 B. JÓNSSON: Uncountable Fraïssé limits in model theory.
- 1989 M. DROSTE, R. GÖBEL: Jónsson's theory in the framework of category theory.
 Applications to algebra and domain theory.
- 2006 T. IRWIN, S. SOLECKI: Reversed Fraïssé theory for finite models.

Application to topology: the pseudo-arc.

Category-theoretic approach

Setup:

Fix a category \mathfrak{K} with the following properties:

(JE) For every objects x, y in \Re there exists a diagram of the form

$$X \longrightarrow Z \longleftarrow Y$$

(A) For every \mathfrak{K} -arrows $f: c \to a, g: c \to b$ there are arrows f', g' for which the diagram

is commutative.

-

Category-theoretic approach

Setup:

Fix a category \mathfrak{K} with the following properties:

(JE) For every objects x, y in \Re there exists a diagram of the form

$$x \longrightarrow z \longleftarrow y$$

(A) For every \mathfrak{K} -arrows $f: c \to a, g: c \to b$ there are arrows f', g' for which the diagram

is commutative.

-

Category-theoretic approach

Setup:

Fix a category \mathfrak{K} with the following properties:

(JE) For every objects x, y in \Re there exists a diagram of the form

$$x \longrightarrow z \longleftarrow y$$

(A) For every \mathfrak{K} -arrows $f: c \to a, g: c \to b$ there are arrows f', g' for which the diagram

is commutative.

э

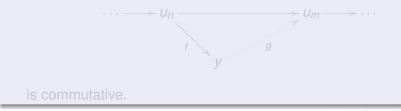
Fraïssé sequences

Definition

A sequence

is Fraïssé if the following conditions are satisfied:

- JE) For every object x in \Re there exists an arrow $x \to u_n$ for some $n \in \mathbb{N}$.
- (A) Given a \mathfrak{K} -arrow $f: u_n \to y$ there exist $m \ge n$ and an arrow g for which the diagram



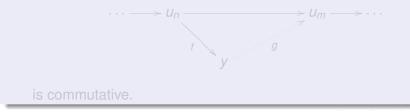
Fraïssé sequences

Definition

A sequence

is Fraïssé if the following conditions are satisfied:

- (JE) For every object x in \mathfrak{K} there exists an arrow $x \to u_n$ for some $n \in \mathbb{N}$.
 - (A) Given a \Re -arrow $f: u_n \to y$ there exist $m \ge n$ and an arrow g for which the diagram



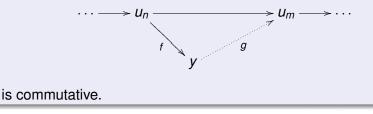
Fraïssé sequences

Definition

A sequence

is Fraïssé if the following conditions are satisfied:

- (JE) For every object x in \mathfrak{K} there exists an arrow $x \to u_n$ for some $n \in \mathbb{N}$.
 - (A) Given a \mathfrak{K} -arrow $f: u_n \to y$ there exist $m \ge n$ and an arrow g for which the diagram



Theorem (Existence)

Assume \Re is dominated by a countable family of arrows. Then there exists a Fraïssé sequence in \Re .

Theorem (Homogeneity and Uniqueness)

Let \vec{u} , \vec{v} be Fraïssé sequences in \Re and let $f: u_0 \rightarrow v_0$ be a \Re -arrow. Then there exists an isomorphism of sequences $H: \vec{u} \rightarrow \vec{v}$ extending f.

Theorem (Universality)

Let \vec{u} be a Fraïssé sequence in \Re . Then for every sequence \vec{x} in \Re there exists an arrow of sequences

$$F: \vec{x} \to \vec{u}.$$

不同 トイモトイモ

Theorem (Existence)

Assume \Re is dominated by a countable family of arrows. Then there exists a Fraïssé sequence in \Re .

Theorem (Homogeneity and Uniqueness)

Let \vec{u} , \vec{v} be Fraïssé sequences in \Re and let $f: u_0 \to v_0$ be a \Re -arrow. Then there exists an isomorphism of sequences $H: \vec{u} \to \vec{v}$ extending f.

Theorem (Universality)

Let \vec{u} be a Fraïssé sequence in \mathfrak{K} . Then for every sequence \vec{x} in \mathfrak{K} there exists an arrow of sequences

$$F: \vec{x} \to \vec{u}.$$

Theorem (Existence)

Assume \Re is dominated by a countable family of arrows. Then there exists a Fraïssé sequence in \Re .

Theorem (Homogeneity and Uniqueness)

Let \vec{u} , \vec{v} be Fraïssé sequences in \Re and let $f: u_0 \to v_0$ be a \Re -arrow. Then there exists an isomorphism of sequences $H: \vec{u} \to \vec{v}$ extending f.

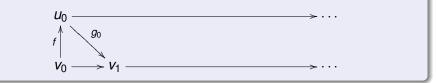
Theorem (Universality)

Let \vec{u} be a Fraïssé sequence in \Re . Then for every sequence \vec{x} in \Re there exists an arrow of sequences

$$F: \vec{x} \to \vec{u}.$$

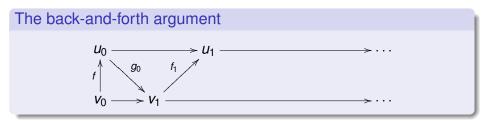
2

イロト イヨト イヨト イヨト

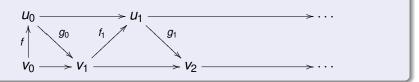


2

不得下 イヨト イヨ



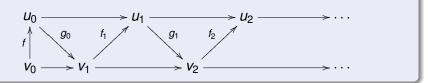
2



2

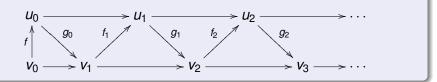
(4) (5) (4) (5)

< 17 ▶



2

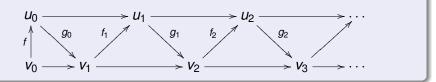
不得下 イヨト イヨ



2

3 > 4 3

< A

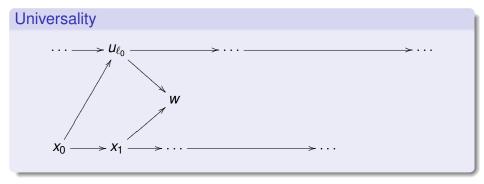


2

不得下 イヨト イヨ

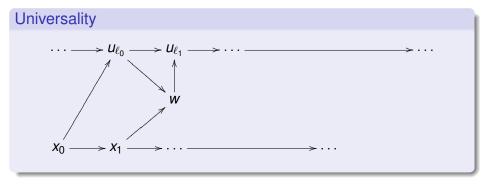
<□> <@> < E> < E> < E</p>

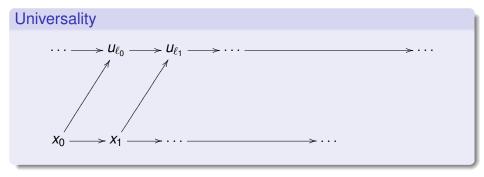
<ロ> <四> <四> <三</td>



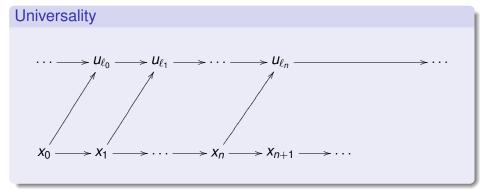
2

イロト イヨト イヨト イヨト

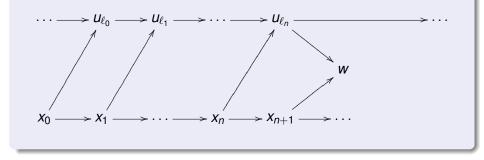


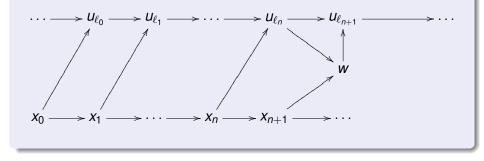


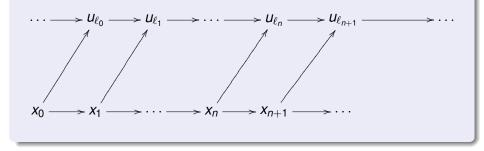
<ロ> <四> <四> <三</td>

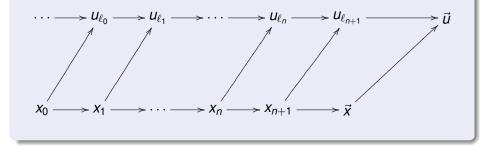


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙









< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Banach spaces

Theorem

Assume the Continuum Hypothesis. There exists a unique, up to isometry, Banach space V_{ω_1} of density \aleph_1 with the following properties.

- V_{ω_1} contains isometric copies of all Banach spaces of density $\leq \aleph_1$.
- 2 V_{ω_1} is homogeneous with respect to its separable subspaces.

- A TE N - A TE N

Banach spaces

Theorem

Assume the Continuum Hypothesis. There exists a unique, up to isometry, Banach space V_{ω_1} of density \aleph_1 with the following properties.

• V_{ω_1} contains isometric copies of all Banach spaces of density $\leq \aleph_1$.

2) V_{ω_1} is homogeneous with respect to its separable subspaces.

(B) (A) (B) (A)

Banach spaces

Theorem

Assume the Continuum Hypothesis. There exists a unique, up to isometry, Banach space V_{ω_1} of density \aleph_1 with the following properties.

- V_{ω_1} contains isometric copies of all Banach spaces of density $\leq \aleph_1$.
- 2 V_{ω_1} is homogeneous with respect to its separable subspaces.

Definition

A projectional resolution of the identity in a Banach space *E* is a transfinite sequence of norm one projections $\{P_{\alpha}\}_{\alpha < \kappa}$ such that

• dens
$$P_{\alpha}E < \text{dens }E$$
.

$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}}.$$

- $I = \lim_{\alpha \to \kappa} P_{\alpha} x.$
- $P_{\delta}x = \lim_{\alpha \to \delta} P_{\alpha}x$ for every limit ordinal $\delta < \kappa$.

The notion of a PRI, originated by Lindenstrauss in the context of reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia, Zizler and others.

Definition

A projectional resolution of the identity in a Banach space *E* is a transfinite sequence of norm one projections $\{P_{\alpha}\}_{\alpha < \kappa}$ such that

- dens $P_{\alpha}E < \text{dens }E$.
- $P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}}.$
- $I = \lim_{\alpha \to \kappa} P_{\alpha} x.$
- $P_{\delta}x = \lim_{\alpha \to \delta} P_{\alpha}x$ for every limit ordinal $\delta < \kappa$.

The notion of a PRI, originated by Lindenstrauss in the context of reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia, Zizler and others.

Definition

A projectional resolution of the identity in a Banach space *E* is a transfinite sequence of norm one projections $\{P_{\alpha}\}_{\alpha < \kappa}$ such that

• dens $P_{\alpha}E < \text{dens }E$.

$$P_{\alpha} P_{\beta} = P_{\min\{\alpha,\beta\}}.$$

- $I x = \lim_{\alpha \to \kappa} P_{\alpha} x.$
- $P_{\delta}x = \lim_{\alpha \to \delta} P_{\alpha}x$ for every limit ordinal $\delta < \kappa$.

The notion of a PRI, originated by Lindenstrauss in the context of reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia, Zizler and others.

Definition

A projectional resolution of the identity in a Banach space *E* is a transfinite sequence of norm one projections $\{P_{\alpha}\}_{\alpha < \kappa}$ such that

• dens
$$P_{\alpha}E < \text{dens }E$$
.

$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}}.$$

- $P_{\delta}x = \lim_{\alpha \to \delta} P_{\alpha}x$ for every limit ordinal $\delta < \kappa$.

The notion of a PRI, originated by Lindenstrauss in the context of reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia, Zizler and others.

Definition

A projectional resolution of the identity in a Banach space *E* is a transfinite sequence of norm one projections $\{P_{\alpha}\}_{\alpha < \kappa}$ such that

• dens
$$P_{\alpha}E < \text{dens } E$$
.

$$P_{\alpha} P_{\beta} = P_{\min\{\alpha,\beta\}}.$$

• $P_{\delta}x = \lim_{\alpha \to \delta} P_{\alpha}x$ for every limit ordinal $\delta < \kappa$.

The notion of a PRI, originated by Lindenstrauss in the context of reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia, Zizler and others.

イロト イポト イラト イラト

Definition

A projectional resolution of the identity in a Banach space *E* is a transfinite sequence of norm one projections $\{P_{\alpha}\}_{\alpha < \kappa}$ such that

• dens
$$P_{\alpha}E < \text{dens }E$$
.

$$P_{\alpha} P_{\beta} = P_{\min\{\alpha,\beta\}}.$$

• $P_{\delta}x = \lim_{\alpha \to \delta} P_{\alpha}x$ for every limit ordinal $\delta < \kappa$.

The notion of a PRI, originated by Lindenstrauss in the context of reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia, Zizler and others.

4 **A** N A **B** N A **B** N

Theorem

Assume $2^{\aleph_0} = \aleph_1$.

There exists a Banach space *E* with a PRI $\{P_{\alpha}\}_{\alpha < \omega_1}$ and of density \aleph_1 , which has the following properties:

(a) The family

 $\{X \subseteq E : X \text{ is } 1 \text{-complemented in } E\}$

is, modulo linear isometries, the class of all Banach spaces of density $\leq \aleph_1$ with a PRI.

(b) Given separable 1-complemented subspaces X, Y ⊆ E, given a linear isometry T: X → Y, there exist a linear isometry H: E → E extending T.

Moreover, these properties describe the space E uniquely, up to a linear isometry.

3

Every compact space *K* embeds into a cube $[0, 1]^{\kappa}$, for some κ .

A compact space K is Valdivia compact if it admits an embedding $e: K \to [0, 1]^{\kappa}$ so that $e^{-1}[\Sigma(\kappa)]$ is dense in K, where $\Sigma(\kappa)$ is the Σ -product of κ copies of [0, 1], namely:

 $\Sigma(\kappa) = \{ x \in [0,1]^{\kappa} \colon |\{ \alpha \colon x(\alpha) \neq 0\}| \leqslant \aleph_0 \}.$

Theorem

Given a Valdivia compact space K of weight \aleph_1 , the Banach space C(K) has a PRI.

Theorem

Given a Banach space *E* with a PRI and of density \aleph_1 , the space $\langle \overline{B}_{E^*}, \tau_{weakstar} \rangle$ is Valdivia compact.

< ロ > < 同 > < 回 > < 回 >

Every compact space K embeds into a cube $[0, 1]^{\kappa}$, for some κ . A compact space K is Valdivia compact if it admits an embedding $e: K \to [0, 1]^{\kappa}$ so that $e^{-1}[\Sigma(\kappa)]$ is dense in K, where $\Sigma(\kappa)$ is the Σ -product of κ copies of [0, 1], namely:

$$\Sigma(\kappa) = \{ x \in [0, 1]^{\kappa} \colon |\{ \alpha \colon x(\alpha) \neq 0\}| \leq \aleph_0 \}.$$

Theorem

Given a Valdivia compact space K of weight \aleph_1 , the Banach space C(K) has a PRI.

Theorem

Given a Banach space *E* with a PRI and of density \aleph_1 , the space $\langle \overline{B}_{E^*}, \tau_{weakstar} \rangle$ is Valdivia compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

14 December 2011

21/28

Every compact space K embeds into a cube $[0, 1]^{\kappa}$, for some κ . A compact space K is Valdivia compact if it admits an embedding $e: K \to [0, 1]^{\kappa}$ so that $e^{-1}[\Sigma(\kappa)]$ is dense in K, where $\Sigma(\kappa)$ is the Σ -product of κ copies of [0, 1], namely:

$$\Sigma(\kappa) = \{ x \in [0,1]^{\kappa} \colon |\{ \alpha \colon x(\alpha) \neq \mathbf{0}\}| \leqslant \aleph_{\mathbf{0}} \}.$$

Theorem

Given a Valdivia compact space K of weight \aleph_1 , the Banach space C(K) has a PRI.

Theorem

Given a Banach space *E* with a PRI and of density \aleph_1 , the space $\langle \overline{B}_{E^*}, \tau_{weakstar} \rangle$ is Valdivia compact.

Every compact space K embeds into a cube $[0, 1]^{\kappa}$, for some κ . A compact space K is Valdivia compact if it admits an embedding $e: K \to [0, 1]^{\kappa}$ so that $e^{-1}[\Sigma(\kappa)]$ is dense in K, where $\Sigma(\kappa)$ is the Σ -product of κ copies of [0, 1], namely:

$$\Sigma(\kappa) = \{ x \in [0,1]^{\kappa} \colon |\{ \alpha \colon x(\alpha) \neq \mathbf{0}\}| \leqslant \aleph_{\mathbf{0}} \}.$$

Theorem

Given a Valdivia compact space K of weight \aleph_1 , the Banach space C(K) has a PRI.

Theorem

Given a Banach space *E* with a PRI and of density \aleph_1 , the space $\langle \overline{B}_{E^*}, \tau_{weakstar} \rangle$ is Valdivia compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume the Continuum Hypothesis. There exists a unique Valdivia compact space K of weight \aleph_1 with the following properties.

- Every Valdivia compact of weight $\leq \aleph_1$ is homeomorphic to a retract of K.
- ② Given right-invertible maps f: K → X and g: K → Y onto compact metric spaces, given a homeomorphism h: X → Y, there exists a homeomorphism H: K → K such that the square

is commutative.

< ロ > < 同 > < 回 > < 回 >

Assume the Continuum Hypothesis. There exists a unique Valdivia compact space K of weight \aleph_1 with the following properties.

- Every Valdivia compact of weight $\leq \aleph_1$ is homeomorphic to a retract of K.
- ② Given right-invertible maps f: K → X and g: K → Y onto compact metric spaces, given a homeomorphism h: X → Y, there exists a homeomorphism H: K → K such that the square

is commutative.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume the Continuum Hypothesis. There exists a unique Valdivia compact space K of weight \aleph_1 with the following properties.

- Every Valdivia compact of weight ≤ ℵ₁ is homeomorphic to a retract of K.
- ② Given right-invertible maps f: K → X and g: K → Y onto compact metric spaces, given a homeomorphism h: X → Y, there exists a homeomorphism H: K → K such that the square

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

22/28

is commutative.

There exists a linearly ordered Valdivia compact space K_{ω_1} such that for every nonempty linearly ordered Valdivia compact L there exists a continuous increasing surjection

 $K_{\omega_1} \longrightarrow L.$

< 回 > < 回 > < 回 >

Main tool

The next notion, often used in domain theory, goes back to D. Scott, in the context of unsigned λ -calculus.

Embedding-Projection pairs

Fix a category \mathfrak{K} . We define a new category $\ddagger \mathfrak{K}$ as follows:

🍽 The objects of ‡£ are the objects of £.

If An arrow from x to y in $\ddagger \Re$ is a pair $\langle e, p \rangle$, where $e: x \to y$ and $p: y \to x$ are \Re -arrows such that

 $p \circ e = \mathrm{id}_X.$

イロト イポト イラト イラト

Main tool

The next notion, often used in domain theory, goes back to D. Scott, in the context of unsigned λ -calculus.

Embedding-Projection pairs

Fix a category \mathfrak{K} . We define a new category $\ddagger \mathfrak{K}$ as follows:

In the objects of $\ddagger \Re$ are the objects of \Re .

In An arrow from x to y in $\ddagger \Re$ is a pair $\langle e, p \rangle$, where $e: x \to y$ and $p: y \to x$ are \Re -arrows such that

 $p \circ e = \mathrm{id}_X.$

イロト イヨト イヨト イヨト

Main tool

The next notion, often used in domain theory, goes back to D. Scott, in the context of unsigned λ -calculus.

Embedding-Projection pairs

Fix a category \mathfrak{K} . We define a new category $\ddagger \mathfrak{K}$ as follows:

- In the objects of $\ddagger \Re$ are the objects of \Re .
- Image An arrow from x to y in $\ddagger \Re$ is a pair $\langle e, p \rangle$, where $e: x \to y$ and $p: y \to x$ are \Re -arrows such that

$$p \circ e = \mathrm{id}_x.$$

3

4 **A** N A **B** N A **B** N

Let \mathfrak{K} be the category of separable Banach spaces with operators of norm \leqslant 1.

A Banach space of density \aleph_1 is the limit of a "continuous" ω_1 -sequence in $\ddagger \Re$ if and only if it has a PRI.

Example

Let \mathfrak{K} be the category of nonempty compact metric spaces with continuous maps.

A compact space of weight \aleph_1 is the inverse limit of a "continuous" ω_1 -sequence in $\ddagger \Re$ if and only if it is Valdivia compact.

< ロ > < 同 > < 回 > < 回 >

Let \mathfrak{K} be the category of separable Banach spaces with operators of norm \leqslant 1.

A Banach space of density \aleph_1 is the limit of a "continuous" ω_1 -sequence in $\ddagger \Re$ if and only if it has a PRI.

Example

Let \mathfrak{K} be the category of nonempty compact metric spaces with continuous maps.

A compact space of weight \aleph_1 is the inverse limit of a "continuous" ω_1 -sequence in $\ddagger \Re$ if and only if it is Valdivia compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathfrak{K} be the category of separable Banach spaces with operators of norm \leqslant 1.

A Banach space of density \aleph_1 is the limit of a "continuous" ω_1 -sequence in $\pm \Re$ if and only if it has a PRI.

Example

Let \mathfrak{K} be the category of nonempty compact metric spaces with continuous maps.

A compact space of weight \aleph_1 is the inverse limit of a "continuous" ω_1 -sequence in $\ddagger \Re$ if and only if it is Valdivia compact.

Let \mathfrak{K} be the category of separable Banach spaces with operators of norm \leqslant 1.

A Banach space of density \aleph_1 is the limit of a "continuous" ω_1 -sequence in $\pm \Re$ if and only if it has a PRI.

Example

Let \mathfrak{K} be the category of nonempty compact metric spaces with continuous maps.

A compact space of weight \aleph_1 is the inverse limit of a "continuous" ω_1 -sequence in $\ddagger \Re$ if and only if it is Valdivia compact.

æ

- Complementably universal Banach space with a basis
- Approximate Fraïssé limits: The Gurarii space, the Urysohn space, etc.
- (with A. Avilés) Fraïssé functors and their limits, with applications to Banach spaces (in progress)

不同 トイモトイモ

Complementably universal Banach space with a basis

- Approximate Fraïssé limits: The Gurarii space, the Urysohn space, etc.
- (with A. Avilés) Fraïssé functors and their limits, with applications to Banach spaces (in progress)

4 **A** N A **B** N A **B** N

- Complementably universal Banach space with a basis
- Approximate Fraïssé limits: The Gurarii space, the Urysohn space, etc.
- (with A. Avilés) Fraïssé functors and their limits, with applications to Banach spaces (in progress)

- A TE N - A TE N

- Complementably universal Banach space with a basis
- Approximate Fraïssé limits: The Gurarii space, the Urysohn space, etc.
- (with A. Avilés) Fraïssé functors and their limits, with applications to Banach spaces (in progress)

E N 4 E N

References

- J. KAKOL, W. KUBIŚ, M. LÓPEZ-PELLICER, Descriptive Topology in Selected Topics of Functional Analysis, Developments in Mathematics, Vol. 24, Springer Science+Business Media, New York 2011
- W. KUBIŚ, *Fraïssé sequences: category-theoretic approach to universal homogeneous structures*, preprint http://arxiv.org/abs/0711.1683
- W. KUBIŚ, *Injective objects and retracts of Fraïssé limits*, preprint http://arxiv.org/abs/1107.4620
- W. KUBIŚ, S. SOLECKI, A short proof of isometric uniqueness of the Gurarii space, to appear in Israel J. Math.

B N A **B** N