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Some history

Theorem (Cantor 1895)

The set of rational numbers (Q, <) is the unique countable linearly
ordered set whose ordering is dense and has no end-points.
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Some history

Theorem (Cantor 1895)

The set of rational numbers (Q, <) is the unique countable linearly
ordered set whose ordering is dense and has no end-points.

Proof.

Back-and-forth argument (developed by Huntington 1904 and
Hausdorff 1914). O
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Urysohn’s space

Theorem (P.S. Urysohn 1924)

There exists a unique complete separable metric space U satisfying
the following conditions:

The space U is called
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Urysohn’s space

Theorem (P.S. Urysohn 1924)

There exists a unique complete separable metric space U satisfying
the following conditions:

@ Every separable metric space embeds isometrically into U.

© Every isometry between finite subsets of U extends to a bijective
isometry of U.

The space U is called the Urysohn space.
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Roland Fraissé (1920 — 2008)

A French mathematician working mostly in logic, set theory (theory of
relations). One of his important works is the Fraissé limit construction
in model theory:

8= Sur quelques classifications des systemes de relations, Publ. Sci.
Univ. Alger. Sér. A. 1 (1954) 35—-182
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Fraissé theory

The setup:
A class .# of finitely-generated models of a fixed first-order language. J
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The setup:

A class .# of finitely-generated models of a fixed first-order language.

Assumptions:

g= If X € # and Y is a submodel of X then Y € ..
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Fraissé theory

The setup:

A class .# of finitely-generated models of a fixed first-order language.

Assumptions:

If X € .# and Y is a submodel of X then Y € .%.

¢= Given X, Y € Z#, there is Z € .Z such that both X and Y embed
into Z.
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Fraissé theory

The setup:

A class .# of finitely-generated models of a fixed first-order language.

Assumptions:
If X € # and Y is a submodel of X then Y € .%#.

Given X, Y € .7, there is Z € .% such that both X and Y embed
into Z.

g= Given X, Y € Z withZ = XnNY € .% there exist W € . and
embeddings f: X — W, g: Y — W such that

f1z=g!Z
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Fraissé theory

The setup:

A class .# of finitely-generated models of a fixed first-order language.

Assumptions:
If X € # and Y is a submodel of X then Y € .%#.

Given X, Y € .7, there is Z € .% such that both X and Y embed
into Z.

g= Given X, Y € Z withZ = XnNY € .% there exist W € . and
embeddings f: X — W, g: Y — W such that

f1z=g!Z

Definition
Such a family .% is called a Fraissé class.

V.
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Notation

Let .Z be a class of finitely-generated models. Denote by .# the class
of all countable models that can be written as .y Xn, where X, € .7
for every n € N.

7/28
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Notation
Let .Z be a class of finitely-generated models. Denote by .# the class
of all countable models that can be written as .y Xn, where X, € .7

for every n € N.
Given a countable model M, denote by Age (M) the class of all
finitely-generated models isomorphic to submodels of M.
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Notation

Let .Z be a class of finitely-generated models. Denote by .# the class
of all countable models that can be written as .y Xn, where X, € .7
for every n € N.

Given a countable model M, denote by Age (M) the class of all
finitely-generated models isomorphic to submodels of M.

Theorem (Fraissé 1954)

Let & be a Fraissé class with countably many isomorphic types. Then
there exists a unique model U € . satisfying the following conditions.
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Notation

Let .Z be a class of finitely-generated models. Denote by .# the class
of all countable models that can be written as .y Xn, where X, € .7
for every n € N.

Given a countable model M, denote by Age (M) the class of all
finitely-generated models isomorphic to submodels of M.

Theorem (Fraissé 1954)

Let & be a Fraissé class with countably many isomorphic types. Then
there exists a unique model U € . satisfying the following conditions.

Q Age (U) = #.

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Universal homogeneous structures 14 December 2011 7/28



Notation

Let .Z be a class of finitely-generated models. Denote by .# the class
of all countable models that can be written as .y Xn, where X, € .7
for every n € N.

Given a countable model M, denote by Age (M) the class of all
finitely-generated models isomorphic to submodels of M.

Theorem (Fraissé 1954)

Let # be a Fraissé class with countably many isomorphic types. Then
there exists a unique model U € . satisfying the following conditions.
Q Age(U) = 2.
@ Given models X C Y in %, for every embedding f: X — U there
exists an embedding g: Y — U suchthatg | X = f.
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Notation

Let .Z be a class of finitely-generated models. Denote by .# the class
of all countable models that can be written as .y Xn, where X, € .7
for every n € N.

Given a countable model M, denote by Age (M) the class of all
finitely-generated models isomorphic to submodels of M.

Theorem (Fraissé 1954)

Let # be a Fraissé class with countably many isomorphic types. Then
there exists a unique model U € . satisfying the following conditions.
Q Age(U) = 2.
@ Given models X C Y in %, for every embedding f: X — U there
exists an embedding g: Y — U suchthatg | X = f.

Notation: U = Flim(.#), the Fraissé limit of .7
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Theorem (Fraissé 1954)
Let # be a Fraissé class with U = Flim(.%). Then
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Theorem (Fraissé 1954)
Let .7 be a Fraissé class with U = Flim(.%#). Then

(a) For every isomorphism h: X — Y between finitely-generated
submodels of U there exists an automorphism H: U — U such
thatH | X = h.
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Theorem (Fraissé 1954)
Let .7 be a Fraissé class with U = Flim(.%#). Then

(a) For every isomorphism h: X — Y between finitely-generated
submodels of U there exists an automorphism H: U — U such
thatH | X = h.

(b) Forevery A € .F there exists an embedding f: A — U.
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Theorem (Fraissé 1954)
Let .7 be a Fraissé class with U = Flim(.%#). Then

(a) For every isomorphism h: X — Y between finitely-generated
submodels of U there exists an automorphism H: U — U such
thatH | X = h.

(b) Forevery A € .F there exists an embedding f: A — U.

Condition (a) is called ultra-homogeneity or .7 -homogeneity.
Condition (b) is universality.
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Typical examples

Q@ (Q, <) =Flim(¥), where .# = all finite linear orderings.
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Typical examples

Q@ (Q,<) =Flim(¥), where . = all finite linear orderings.
© The random graph is Flim(¢), where ¢ = all finite graphs.
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Typical examples

Q@ (Q,<) =Flim(¥), where . = all finite linear orderings.
© The random graph is Flim(¢), where ¢ = all finite graphs.

© The rational Urysohn space is Flim(% ), where % is the class of
all finite metric spaces with rational distances.
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A related example

Theorem (Gurarii 1966)

There exists a separable Banach space G with the following property:
(G) Given finite-dimensional spaces X C Y, given an isometric

embedding f: X — G, given e > 0, there exists an e-isometric
embedding f: Y — G such thatf | X = f.
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A related example

Theorem (Gurarii 1966)

There exists a separable Banach space G with the following property:
(G) Given finite-dimensional spaces X C Y, given an isometric

embedding f: X — G, given e > 0, there exists an e-isometric
embedding f: Y — G such thatf | X = f.

Theorem (Gurarii 1966)

The Gurarii space is almost homogeneous (but not homogeneous)
with respect to finite-dimensional subspaces.
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A related example

Theorem (Gurarii 1966)

There exists a separable Banach space G with the following property:
(G) Given finite-dimensional spaces X C Y, given an isometric

embedding f: X — G, given e > 0, there exists an e-isometric
embedding f: Y — G such thatf | X = f.

Theorem (Gurarii 1966)

The Gurarii space is almost homogeneous (but not homogeneous)
with respect to finite-dimensional subspaces.

Theorem (Lusky 1976)
The Gurarii space is unique up to isometry.
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Uniqueness of the Gurarii space

Theorem (Solecki & K. 2011)
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Uniqueness of the Gurarii space

Theorem (Solecki & K. 2011)

For every e-isometry f: X — Y between finite-dimensional subspaces

of separable Gurarii space Gy, Go respectively, there exists a bijective
isometry h: Gy — Go such that

Ih T X —f]| <e.
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Uniqueness of the Gurarii space

Theorem (Solecki & K. 2011)

For every c-isometry f: X — Y between finite-dimensional subspaces

of separable Gurarii space Gy, Go respectively, there exists a bijective
isometry h: Gy — Go such that

1A X —f] <e.

Proof.

An “approximate” version of the back-and-forth argument, using a
geometric lemma on “correcting” almost isometries. O

v
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More history
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More history

g= 1960 B. JONSSON: Uncountable Fraissé limits in model theory.
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More history

1960 B. JONSSON: Uncountable Fraissé limits in model theory.

1989 M. DROSTE, R. GOBEL: Jonsson’s theory in the framework
of category theory.
Applications to algebra and domain theory.
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More history

1960 B. JONSSON: Uncountable Fraissé limits in model theory.

1989 M. DROSTE, R. GOBEL: Jonsson’s theory in the framework
of category theory.
Applications to algebra and domain theory.

2006 T. IRWIN, S. SOLECKI: Reversed Fraissé theory for finite
models.
Application to topology: the pseudo-arc.
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Category-theoretic approach

Setup:
Fix a category & with the following properties:
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Category-theoretic approach

Setup:
Fix a category & with the following properties:
(JE) For every objects x, y in & there exists a diagram of the form

X—2Z<—Y
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Category-theoretic approach

Setup:
Fix a category & with the following properties:
(JE) For every objects x, y in & there exists a diagram of the form

X—2Z<—Y

(A) For every f-arrows f: ¢ — a, g: ¢ — b there are arrows f', g’ for
which the diagram

is commutative.
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Fraissé sequences
Definition
A sequence

Uop Uy °oc Un Unt1

is Fraissé if the following conditions are satisfied:

v
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Fraissé sequences
Definition
A sequence

Uop Uy °oc Un Unt1

is Fraissé if the following conditions are satisfied:

(JE) For every object x in £ there exists an arrow x — u, for some
neN.

v
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Fraissé sequences
Definition
A sequence

Uop Uy °oc Un Unt1

is Fraisseé if the following conditions are satisfied:
(JE) For every object x in £ there exists an arrow x — u, for some
neN.
(A) Given a g-arrow f: u, — y there exist m > n and an arrow g for
which the diagram

Un Um

is commutative.

v
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Theorem (Existence)

Assume R is dominated by a countable family of arrows. Then there
exists a Fraissé sequence in R.
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Theorem (Existence)

Assume R is dominated by a countable family of arrows. Then there
exists a Fraissé sequence in {.

Theorem (Homogeneity and Uniqueness)

Let U, V be Fraissé sequences in & and let f: uy — vo be a K-arrow.
Then there exists an isomorphism of sequences H: U — V extending f.
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Theorem (Existence)

Assume R is dominated by a countable family of arrows. Then there
exists a Fraissé sequence in {.

Theorem (Homogeneity and Uniqueness)

Let U, V be Fraissé sequences in & and let f: uy — vo be a K-arrow.
Then there exists an isomorphism of sequences H: U — v extending f.

Theorem (Universality)

Let U be a Fraissé sequence in &. Then for every sequence X in &
there exists an arrow of sequences

—

F: X — d.
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The back-and-forth argument

Up

{

Vo
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The back-and-forth argument
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The back-and-forth argument

Up U4
N\
) V4
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The back-and-forth argument

Uo t
N N
Vo V1 Vo
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The back-and-forth argument

Uo t Uz
N N Y

f

Vo V4 Vo
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The back-and-forth argument

Up U4 Uo
[N N N
Yo Vi Vo V3
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The back-and-forth argument

Up U4 Uo ..
N N NS
Yo Vi Vo V3 000
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Universality
. UZO e e
XO X1 000
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Universality
. UZO e e
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Universality

Uy,

X0 X1

/
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Universality

Uy,

Uy,
w

N\
-

Xo X1
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Universality
.. UZO Ue1 e N
X0 Xq 000 .
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Universality
U, U, i Ug,
X0 X4 000 Xn Xn4+1

W.Kubis$ (http://www.pu.kielce.pl/~wkubis/) Universal homogeneous structures



Universality

e

Xn+1
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Universality

U£n+1 - 5.

e

Xn+1 _—
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Universality

u£n+1 _ > ...

Y

Xn+1 _—
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Universality

uen+1

Yy

Xn+1
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Banach spaces

Theorem

Assume the Continuum Hypothesis. There exists a unique, up to
isometry, Banach space V,,, of density Xy with the following properties.
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Banach spaces

Theorem

Assume the Continuum Hypothesis. There exists a unique, up to
isometry, Banach space V,,, of density X with the following properties.

@ V., contains isometric copies of all Banach spaces of density
< Ny,
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Banach spaces

Theorem

Assume the Continuum Hypothesis. There exists a unique, up to
isometry, Banach space V,,, of density X with the following properties.

@ V., contains isometric copies of all Banach spaces of density
< Ny,

@ V., is homogeneous with respect to its separable subspaces.
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Projectional resolutions

Definition
A projectional resolution of the identity in a Banach space E is a
transfinite sequence of norm one projections { P, }.<x such that
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Projectional resolutions

Definition

A projectional resolution of the identity in a Banach space E is a

transfinite sequence of norm one projections { P, }.<x such that
@ densP.E < densE.
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Projectional resolutions

Definition
A projectional resolution of the identity in a Banach space E is a
transfinite sequence of norm one projections { P, }.<x such that
@ densP.E < densE.
o PaP,B = Pmin{a,ﬁ}-
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Projectional resolutions

Definition
A projectional resolution of the identity in a Banach space E is a
transfinite sequence of norm one projections { P, }.<x such that
@ densP.E < densE.
o PaP,B = Pmin{a,ﬁ}-
Q x=lim,_. P.x.
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Projectional resolutions

Definition
A projectional resolution of the identity in a Banach space E is a
transfinite sequence of norm one projections { P, }.<x such that
@ densP.E < densE.
o PaP,B = Pmin{a,ﬁ}-
Q x=lim,_. P.x.
Q Psx = lim,_,5 P,x for every limit ordinal § < .
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Projectional resolutions

Definition
A projectional resolution of the identity in a Banach space E is a
transfinite sequence of norm one projections { P, }.<x such that
@ densP.E < densE.
o PaP,B = Pmin{a,ﬁ}-
Q x=lim,_. P.x.
Q Psx = lim,_,5 P,x for every limit ordinal § < .

The notion of a PRI, originated by Lindenstrauss in the context of
reflexive spaces, was studied by Fabian, Orihuela, Plichko, Valdivia,
Zizler and others.
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Theorem
Assume 280 = Ny.

There exists a Banach space E with a PRI { P, }q<., and of density X,
which has the following properties:

(a) The family
{X C E: X is 1-complemented in E}
is, modulo linear isometries, the class of all Banach spaces of

density < Ny with a PRI.

(b) Given separable 1-complemented subspaces X,Y C E, given a

linear isometry T: X — Y, there exist a linear isometry H: E — E
extending T.

Moreover, these properties describe the space E uniquely, up to a
linear isometry.
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Valdivia compact spaces

Every compact space K embeds into a cube [0, 1]%, for some k.
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Valdivia compact spaces

Every compact space K embeds into a cube [0, 1]%, for some k.
A compact space K is Valdivia compact if it admits an embedding
e: K — [0,1]" so that e[ ()] is dense in K, where ¥ (k) is the
Y -product of x copies of [0, 1], namely:

Y (k) ={x€[0,1]": [{a: x(a) # 0} < No}.

W.Kubis$ (http://www.pu.kielce.pl/~wkubis/)

Universal homogeneous structures 14 December 2011 21/28



Valdivia compact spaces

Every compact space K embeds into a cube [0, 1]%, for some k.
A compact space K is Valdivia compact if it admits an embedding
e: K — [0,1]" so that e~ '[X ()] is dense in K, where (k) is the
Y -product of x copies of [0, 1], namely:

Y (k) ={x€[0,1]": [{a: x(a) # 0} < No}.

Theorem

Given a Valdivia compact space K of weight X, the Banach space
C(K) has a PRI.
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Valdivia compact spaces

Every compact space K embeds into a cube [0, 1]%, for some k.
A compact space K is Valdivia compact if it admits an embedding
e: K — [0,1]" so that e~ '[X ()] is dense in K, where (k) is the
Y -product of x copies of [0, 1], namely:

Y (k) ={x€[0,1]": [{a: x(a) # 0} < No}.

Theorem

Given a Valdivia compact space K of weight X, the Banach space
C(K) has a PRI.

Theorem

Given a Banach space E with a PRI and of density X+, the space
(Bg+, Tweakstar) 1S Valdivia compact.
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Theorem

Assume the Continuum Hypothesis. There exists a unique Valdivia
compact space K of weight Xy with the following properties.
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Theorem
Assume the Continuum Hypothesis. There exists a unique Valdivia
compact space K of weight Xy with the following properties.
@ Every Valdivia compact of weight < R4 is homeomorphic to a
retract of K.
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Theorem
Assume the Continuum Hypothesis. There exists a unique Valdivia
compact space K of weight Xy with the following properties.
@ Every Valdivia compact of weight < R4 is homeomorphic to a
retract of K.

© Given right-invertible maps f: K — X and g: K — Y onto
compact metric spaces, given a homeomorphism h: X — Y, there
exists a homeomorphism H: K — K such that the square

K—1-

=X

“
Q

~<

X%

is commutative.
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Theorem

There exists a linearly ordered Valdivia compact space K., such that

for every nonempty linearly ordered Valdivia compact L there exists a
continuous increasing surjection

KOJ1 e L
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Main tool

The next notion, often used in domain theory, goes back to D. Scott, in
the context of unsigned A-calculus.

Embedding-Projection pairs
Fix a category K. We define a new category {1 as follows:
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The next notion, often used in domain theory, goes back to D. Scott, in
the context of unsigned A-calculus.

Embedding-Projection pairs

Fix a category K. We define a new category {1 as follows:
The objects of 1R are the objects of \.
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Main tool

The next notion, often used in domain theory, goes back to D. Scott, in
the context of unsigned A-calculus.

Embedding-Projection pairs
Fix a category K. We define a new category {1 as follows:
The objects of {8 are the objects of 8.

An arrow from x to y in 1R is a pair (e, p), where e: x — y and
p: y — x are f-arrows such that

poe=idy.
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Example

Let & be the category of separable Banach spaces with operators of
norm < 1.
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Example
Let & be the category of separable Banach spaces with operators of

norm < 1.
A Banach space of density R is the limit of a “continuous”

wi-sequence in R if and only if it has a PRI.
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Example

Let & be the category of separable Banach spaces with operators of
norm < 1.

A Banach space of density R is the limit of a “continuous”
wi-sequence in R if and only if it has a PRI.

Example

Let R be the category of nonempty compact metric spaces with
continuous maps.
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Example

Let & be the category of separable Banach spaces with operators of
norm < 1.

A Banach space of density R is the limit of a “continuous”
wi-sequence in R if and only if it has a PRI.

Example

Let R be the category of nonempty compact metric spaces with
continuous maps.

A compact space of weight X4 is the inverse limit of a “continuous”
wi-sequence in 1R if and only if it is Valdivia compact.
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Further topics

¢= Complementably universal Banach space with a basis
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Further topics

Complementably universal Banach space with a basis

Approximate Fraissé limits: The Gurarii space, the Urysohn
space, etc.
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Further topics

Complementably universal Banach space with a basis
Approximate Fraissé limits: The Gurarii space, the Urysohn
space, etc.

(with A. Avilés) Fraissé functors and their limits, with applications
to Banach spaces (in progress)
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