Perfect cliques and G_{δ} colorings of Polish spaces

Wiesław Kubiś
Ben-Gurion University of the Negev, Beer-Sheva
Israel
and
University of Silesia, Katowice
Poland
E-mail: kubis@math.bgu.ac.il

July, 2001

Abstract

A coloring of a set X is any subset C of $[X]^{N}$, where $N>1$ is a natural number. We give some sufficient conditions for the existence of a perfect C-homogeneous set, in case where C is G_{δ} and X is a Polish space. In particular, we show that it is sufficient that there exist C-homogeneous sets of arbitrarily large countable Cantor-Bendixson rank. We apply our methods to show that an analytic subset of the plane contains a perfect 3 -clique if it contains any uncountable k-clique, where k is a natural number or \aleph_{0} (a set K is a k-clique in X if the convex hull of any of its k-element subsets is not contained in X).

2000 AMS Subject Classification: Primary: 52A37, 54H05, Secondary: 03E02, 52A10.
Keywords: Open $\left(G_{\delta}\right)$ coloring, perfect homogeneous set, clique.

1 Introduction

For a set X and natural number $N,[X]^{N}$ denotes the collection of all N-element subsets of X. A (two-color) coloring of X is (represented by) a set $C \subseteq[X]^{N}$. We identify $[X]^{N}$ with a suitable subspace of the product X^{N}. We are interested in the following problem: find sufficient conditions for the existence of a perfect C-homogeneous set $P \subseteq X$, where X is a Polish space and $C \subseteq[X]^{N}$ is open (or more generally G_{δ}). A natural example for this problem is the following: let $X \subseteq \mathbb{R}^{N}$ be closed and $C=\left\{s \in[X]^{k}\right.$: conv $\left.s \nsubseteq X\right\}$. Then C is open and a C-homogeneous set is called a k-clique in X. It is known (see [3]) that there exists a closed set $X \subseteq \mathbb{R}^{2}$ such that X is not a countable union of convex sets but every k-clique in X is countable for every $k<\omega$. On the other hand, it is proved in [3] that if a closed set $X \subseteq \mathbb{R}^{2}$ contains an uncountable k-clique for some k then it contains a perfect 3-clique.
We prove that if C is a G_{δ} coloring of a Polish space and there are no perfect C-homogeneous sets, then there is a countable ordinal γ such that the Cantor-Bendixson rank of every C homogeneous set is $<\gamma$. In the context of cliques, this strengthens the result of Kojman [2]
(see Theorem 3.1(a) below). From our result it follows that if C is a G_{δ} coloring of an analytic space then either there exists a perfect C-homogeneous set or all C-homogeneous sets are countable. This is not true for F_{σ} colorings: a result of Shelah [4] states that consistently there exist F_{σ} 2-colorings with uncountable but not perfect homogeneous sets. Concerning cliques, we investigate analytic subsets of the plane. We prove that if an analytic set $X \subseteq \mathbb{R}^{2}$ contains an uncountable \aleph_{0}-clique then X contains also a perfect 3 -clique.

1.1 Notation

Any subset of $[X]^{N}$ is called a coloring (or an N-coloring) of X. We write $\neg C$ instead of $[X]^{N} \backslash C$. A set $S \subseteq X$ is C-homogeneous if $[A]^{N} \subseteq C$. We identify $[X]^{N}$ with the subspace of X^{N} consisting of all N-tuples $\left(x_{0}, \ldots, x_{N-1}\right)$ with $x_{i} \neq x_{j}$ for $i \neq j$. Thus we may consider topological properties of colorings. If $f: X \rightarrow Y$ is a function then we write $f[S]$ for the image of a set $S \subseteq X$ and $f(s)$ for the value at a point $s \in X$. By a perfect set we mean a compact, nonempty, topological space with no isolated points.

2 On colorings

First we recall a simple result on open 2-colorings of analytic spaces (see Todorčević-Farah's book [5, p. 81]). We present a proof for completeness.

Proposition 2.1. Let X be an analytic space and let $C \subseteq[X]^{2}$ be open. Then either there exists a perfect C-homogeneous set or else X is a countable union of $\neg C$-homogeneous sets, i.e. $X=\bigcup_{n \in \omega} A_{n}$ where $\left[A_{n}\right]^{2} \cap C=\emptyset$ for every $n \in \omega$.

Proof. Let $f: \omega^{\omega} \rightarrow X$ be continuous and onto X. Define

$$
C^{\prime}=\left\{s \in\left[\omega^{\omega}\right]^{2}: f[s] \in C\right\}
$$

Note that if $\{x, y\} \in C^{\prime}$ then $f(x) \neq f(y)$. Now observe that if ω^{ω} is a union of countably many $\neg C^{\prime}$-homogeneous sets, then the same holds for X. Also, if P is a compact, perfect, $C^{\prime}-$ homogeneous subset of ω^{ω} then $f \upharpoonright P$ is one-to-one and hence $f[P]$ is a perfect C-homogeneous set. Thus we may assume that $X=\omega^{\omega}$ and that X cannot be covered by countably many $\neg C$-homogeneous sets.
Let V consist of all $x \in \omega^{\omega}$ such that some neighborhood of x is a countable union of $\neg C$ homogeneous sets. By assumption, it follows that $V \neq \omega^{\omega}$. Let $B=\omega^{\omega} \backslash V$. Now we are working in B : construct a tree $T=\left\{u_{s}: s \in 2^{<\omega}\right\}$ of open subsets of B such that T defines a Cantor set and $\{x, y\} \in C$ whenever $x \in u_{s}, y \in u_{t}$ and $s, t \in 2^{k}$ are distinct, $k<\omega$. Coming to split u_{s}, where $s \in 2^{k}$, we first find a pair $\{x, y\} \in\left[u_{s}\right]^{2} \cap C$ (this is possible since u_{s} is not $\neg C$-homogeneous). Next, using the fact that C is open, enlarge x, y to open sets $u_{s \vee 0}, u_{s \vee 1}$, preserving C-homogeneity. The perfect set obtained from T is evidently C-homogeneous.

The above result is no longer valid when we replace the word "open" with "closed", see [5, p. 83]. Also, the above proposition cannot be strengthened for colorings of triples: there exists a clopen 3-coloring of 2^{ω} such that there are no uncountable homogeneous sets neither of this
color nor of its complement, see Blass' example [1]. In this example, the Cantor-Bendixson rank of any homogeneous set is at most 1 . Below we show that in this situation, there always exists a countable ordinal which bounds the Cantor-Bendixson ranks of all homogeneous sets. In fact this is true for G_{δ} colorings.
For a topological space Y and an ordinal α we denote by $Y^{(\alpha)}$ the α-derivative of Y; the Cantor-Bendixson rank of Y is the minimal ordinal γ such that $Y^{(\gamma+1)}$ is empty.

Theorem 2.2. Let C be a $G_{\delta} N$-coloring of a Polish space X. If for every countable ordinal γ there exists a C-homogeneous set of the Cantor-Bendixson rank $\geqslant \gamma$ then X contains a perfect C-homogeneous set.

Proof. Fix a countable base \mathcal{B} in X and fix a complete metric on X. Let $C=\bigcap_{n \in \omega} C_{n}$, where each C_{n} is open and $C_{n+1} \subseteq C_{n}$. We will construct a tree of open sets $T=\left\{u_{s}: s \in 2^{<\omega}\right\}$ with the following properties:
(i) $\operatorname{cl} u_{s^{\wedge} i} \subseteq u_{s}, \operatorname{cl} u_{s} \cap \operatorname{cl} u_{t}=\emptyset$ if s, t are incompatible and $\operatorname{diam}\left(u_{s}\right)<2^{-\operatorname{length}(s)}$;
(ii) if $k<\omega$ and $s_{0}, \ldots, s_{N-1} \in 2^{k}$ are pairwise distinct then

$$
\left\{x_{0}, \ldots, x_{N-1}\right\} \in C_{k}
$$

whenever $x_{i} \in u_{s_{i}}, i<N$;
(iii) if $k<\omega$ then for each $\gamma<\omega_{1}$ there exists a C-homogeneous set $P=P_{k, \gamma}$ such that $P^{(\gamma)} \cap u_{s} \neq \emptyset$ for each $s \in 2^{k}$.

We start with $u_{\emptyset}=X$. Suppose that u_{s} has been defined for all $s \in 2^{\leqslant k}$. Fix $\gamma<\omega_{1}$ and consider $P=P_{k, \gamma+1}$, as in (iii). Then for each $s \in 2^{k}$ the set $P^{(\gamma)} \cap u_{s}$ is infinite. Fix $S \subseteq P^{(\gamma)}$ such that $\left|S \cap u_{s}\right|=2$ for each $s \in 2^{k}$. Next, enlarge each $x \in S \cap u_{s}$ to a small open set $v_{x} \in \mathcal{B}$, contained in u_{s}, such that $\left\{y_{0}, \ldots, y_{N-1}\right\} \in C_{k+1}$ whenever y_{i} are taken from pairwise distinct v_{x} 's. This is possible, because C_{k+1} is open. Let $\varphi(\gamma)=\left\{v_{x}: x \in S\right\}$. This defines a mapping $\varphi: \omega_{1} \rightarrow[\mathcal{B}]^{<\omega}$. As \mathcal{B} is countable, there is unbounded $F \subseteq \omega_{1}$ such that $\varphi \upharpoonright F$ is constant, say $\left\{v_{s^{\wedge} i}: s \in 2^{k}, i<2\right\}$, where $v_{s^{\wedge} i} \subseteq u_{s}$. Set $u_{s^{\wedge} i}=v_{s \wedge i}$. Observe that (i) holds if we let v_{x} 's to be small enough. Also (ii) holds, by the definition of v_{x} 's. Finally, (iii) holds, because $P_{k, \gamma+1}^{(\gamma)} \cap u_{t} \neq \emptyset$ for $t \in 2^{k+1}$ whenever $\gamma \in F$. By (ii) the perfect set obtained from this construction is C-homogeneous.

Using the above theorem and arguments from the proof of Proposition 2.1 we obtain the following (see Shelah [4, Remark 1.14]):

Corollary 2.3. Let $1 \leqslant N<\omega$ and let C be a $G_{\delta} N$-coloring of an analytic space X. If there exists an uncountable C-homogeneous set then there exists also a perfect one.

3 Applications to convexity

Let $X \subseteq E$, where E is a real vector space. A subset K of X is a k-clique (k can be a cardinal or just a natural number, we will use this notion for $k<\omega$ and $k=\aleph_{0}$) if conv $S \nsubseteq X$ whenever $S \in[K]^{k}$. If E is finite-dimensional and $k>\operatorname{dim} E$ then we can define the notion of a strong k-clique replacing conv S by int conv S in the definition. A finite set $S \subseteq X$ is (strongly) defected in X if conv $S \nsubseteq X$ (int conv $S \nsubseteq X$). It is clear that the relation of strong defectedness is open and defectedness is open provided that X is closed.
Applying the results of the previous section we get the following:
Theorem 3.1. (a) Let X be a closed set in a Polish linear space and let $N<\omega$. If X does not contain a perfect N-clique then all N-cliques in X are countable. Moreover, there exists an ordinal $\gamma<\omega_{1}$ which bounds the Cantor-Bendixson ranks of all N-cliques in X.
(b) Let X be an analytic subset of \mathbb{R}^{m}. If $m<N<\omega$ and X contains an uncountable strong N-clique then X contains also a perfect one.

Theorem 3.1(a) was proved, under the stronger assumption that X is a countable union of convex sets, by Kojman in [2].
In [3] we proved, in particular, that in a closed planar set either all cliques are countable or there exists a perfect 3 -clique. Here we prove the same for analytic sets, namely:

Theorem 3.2. Let $X \subseteq \mathbb{R}^{2}$ be analytic. If X contains an uncountable \aleph_{0}-clique then X contains a perfect 3-clique.

Proof. Fix a continuous function $f: \omega^{\omega} \rightarrow X$ onto X and fix an uncountable \aleph_{0}-clique $K \subseteq X$. We may assume that every line contains only countably many points of L : otherwise, for some line $L, X \cap L$ contains an uncountable \aleph_{0}-clique, so it contains a perfect 2 -clique (Proposition 2.1), which is also a 3 -clique in X. Fix uncountable $K^{\prime} \subseteq \omega^{\omega}$ such that $f \upharpoonright K^{\prime}$ is a bijection onto K.
A finite collection $\left\{u_{0}, \ldots, u_{k-1}\right\}$ of open subsets of ω^{ω} will be called relevant if each u_{i} contains uncountably many points of $K^{\prime}, \operatorname{cl} u_{i} \cap \operatorname{cl} u_{j}=\emptyset$ whenever $i<j<k$ and

$$
\operatorname{int} \operatorname{conv}\left\{f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)\right\} \nsubseteq X
$$

whenever x_{0}, x_{1}, x_{2} are taken from pairwise distinct u_{i} 's. To find a perfect 3 -clique in X, it suffices to construct a perfect tree of open sets in ω^{ω} with relevant levels. If P is a perfect set obtained from such a tree then $f \upharpoonright P$ is one-to-one and $f[P]$ is a perfect strong 3-clique.
Suppose that we have a relevant collection $\left\{u_{0}, \ldots, u_{k}\right\}$. We have to show that it is possible to split each u_{i} to obtain again a relevant collection. We will split u_{k}. Let $L=K^{\prime} \cap u_{k}$ and pick $y_{i} \in u_{i}$ for $i<k$. Define $c_{i}:[L]^{2} \rightarrow 2$ by letting $c_{i}\left(x_{0}, x_{1}\right)=1$ iff $\operatorname{conv}\left\{f\left(x_{0}\right), f\left(x_{1}\right), f\left(y_{i}\right)\right\} \nsubseteq X$. Observe that there are no infinite c_{i}-homogeneous sets of color 0 : if $S \subseteq L$ is infinite then, by Carathéodory's theorem, there is $s \in[S]^{3}$ such that $f[s]$ is defected in X (because $f[S]$ is defected) and hence for some $x_{0}, x_{1} \in s$ we have $\operatorname{conv}\left\{f\left(x_{0}\right), f\left(x_{1}\right), f\left(y_{i}\right)\right\} \nsubseteq X$, because $\operatorname{conv} T \subseteq \bigcup_{x, y \in T} \operatorname{conv}\{x, y, p\}$ for $T \subseteq \mathbb{R}^{2}, p \in \mathbb{R}^{2}$. Using k times the theorem of DushnikMiller we obtain uncountable $L^{\prime} \subseteq L$ which is c_{i}-homogeneous of color 1 for $i<k$. Shrinking L^{\prime} we may assume that each nonempty open subset of L^{\prime} is uncountable. Now choose disjoint
open sets v_{0}, v_{1} with $\operatorname{cl} v_{j} \subseteq u_{k}$ and $v_{j} \cap L^{\prime} \neq \emptyset$ for $j<2$. To finish the proof we need the following geometric property of the plane:

Claim 3.3. Let $A, B \subseteq X \subseteq \mathbb{R}^{2}$ and $c \in \mathbb{R}^{2}$ be such that A, B are uncountable, each line contains countably many points of $A \cup B$ and $\operatorname{conv}\{a, b, c\} \nsubseteq X$ whenever $a \in A, b \in B$. Then there are $a_{0} \in A, b_{0} \in B$ such that int $\operatorname{conv}\left\{a_{0}, b_{0}, c\right\} \nsubseteq X$.

Proof. Suppose this is not true. Observe that, replacing A and B if necessary, we may assume that for some $b_{0} \in B,\left[a, b_{0}\right] \cup[a, c] \nsubseteq X$ whenever $a \in A$. Indeed, if $[b, c] \subseteq X$ for some $b \in B$ then we take $b_{0}=b$, otherwise we take any $a_{0} \in A$ and we replace A and B. Now, without loss of generality, we may assume that $b_{0}=(-1,0), c=(1,0)$ and A is contained in $(-1,1) \times(0,1)$. Now, if some vertical line contains two elements of A then we are done: we take $a_{0} \in A$ such that some $a_{1} \in A$ is below a_{0}, then the relative interiors of segments $\left[b_{0}, a_{1}\right]$, $\left[c, a_{1}\right]$ are contained in the interior of $\operatorname{conv}\left\{a_{0}, b_{0}, c\right\}$.
Assume that each vertical line contains at most one element of A. As A is uncountable, there is $a_{1} \in A$ such that arbitrarily close to a_{1} there are uncountably many points both on the left and the right side of a_{1}. Suppose now that e.g. $\left\{b_{0}, a_{1}\right\}$ is defected in X. As $\left[b_{0}, a_{1}\right]$ contains only countably many points of A, we can find $a_{2} \in A$ which is close enough to a_{1}, on the left side of a_{1} and not in $\left[b_{0}, a_{1}\right]$. If a_{2} is below $\left[b_{0}, a_{1}\right]$ then we can set $a_{0}=a_{1}$, otherwise we can set $a_{0}=a_{2}$.

Let $i=0$. Using Claim 3.3 for $A=f\left[v_{0} \cap L^{\prime}\right], B=f\left[v_{1} \cap L^{\prime}\right]$ and $c=f\left(y_{i}\right)$ we get $x_{j} \in v_{j}$ such that int conv $\left\{f\left(x_{0}\right), f\left(x_{1}\right), f\left(y_{i}\right)\right\} \nsubseteq X$. By continuity, shrink v_{0}, v_{1} and enlarge y_{i} to an open set $u_{i}^{\prime} \subseteq u_{i}$ such that each triple selected from $f\left[v_{0}\right] \times f\left[v_{1}\right] \times f\left[u_{i}^{\prime}\right]$ is (strongly) defected in X. Repeat the same argument for each $i<k$, obtaining a relevant collection $\left\{u_{0}^{\prime}, \ldots, u_{k-1}^{\prime}, v_{0}^{\prime}, v_{1}^{\prime}\right\}$ which realizes the splitting of u_{k}. This completes the proof.

Actually, we have proved that if an analytic planar set X contains any uncountable \aleph_{0}-clique then either X contains a perfect strong 3 -clique or else, $X \cap L$ contains a perfect 2 -clique for some line L.

References

[1] A. Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981) 271-277.
[2] M. Kojman, Cantor-Bendixson degrees and convexity in \mathbb{R}^{2}, Israel J. Math. 121 (2001) 85-91.
[3] S. Geschke, M. Kojman, W. Kubiś, R. Schipperus, Convex decompositions in the plane and continuous pair colorings of the irrationals, submitted.
[4] S. Shelah, Borel sets with large squares, Fund. Math. 159 (1999) 1-50.
[5] S. Todorchevich, I. Farah, Some Applications of the Method of Forcing, Yenisei, Moscow 1995.

