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Abstract

A coloring of a set X is any subset C of [X]N , where N > 1 is a natural number. We
give some sufficient conditions for the existence of a perfect C-homogeneous set, in case
where C is Gδ and X is a Polish space. In particular, we show that it is sufficient that
there exist C-homogeneous sets of arbitrarily large countable Cantor-Bendixson rank. We
apply our methods to show that an analytic subset of the plane contains a perfect 3-clique
if it contains any uncountable k-clique, where k is a natural number or ℵ0 (a set K is a
k-clique in X if the convex hull of any of its k-element subsets is not contained in X).
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1 Introduction

For a set X and natural number N , [X]N denotes the collection of all N -element subsets
of X. A (two-color) coloring of X is (represented by) a set C ⊆ [X]N . We identify [X]N

with a suitable subspace of the product XN . We are interested in the following problem: find
sufficient conditions for the existence of a perfect C-homogeneous set P ⊆ X, where X is
a Polish space and C ⊆ [X]N is open (or more generally Gδ). A natural example for this
problem is the following: let X ⊆ RN be closed and C = {s ∈ [X]k : conv s 6⊆ X}. Then C is
open and a C-homogeneous set is called a k-clique in X. It is known (see [3]) that there exists
a closed set X ⊆ R2 such that X is not a countable union of convex sets but every k-clique
in X is countable for every k < ω. On the other hand, it is proved in [3] that if a closed set
X ⊆ R2 contains an uncountable k-clique for some k then it contains a perfect 3-clique.
We prove that if C is a Gδ coloring of a Polish space and there are no perfect C-homogeneous
sets, then there is a countable ordinal γ such that the Cantor-Bendixson rank of every C-
homogeneous set is < γ. In the context of cliques, this strengthens the result of Kojman [2]

1



(see Theorem 3.1(a) below). From our result it follows that if C is a Gδ coloring of an analytic
space then either there exists a perfect C-homogeneous set or all C-homogeneous sets are
countable. This is not true for Fσ colorings: a result of Shelah [4] states that consistently
there exist Fσ 2-colorings with uncountable but not perfect homogeneous sets. Concerning
cliques, we investigate analytic subsets of the plane. We prove that if an analytic set X ⊆ R2

contains an uncountable ℵ0-clique then X contains also a perfect 3-clique.

1.1 Notation

Any subset of [X]N is called a coloring (or an N -coloring) of X. We write ¬C instead of
[X]N \ C. A set S ⊆ X is C-homogeneous if [A]N ⊆ C. We identify [X]N with the subspace
of XN consisting of all N -tuples (x0, . . . , xN−1) with xi 6= xj for i 6= j. Thus we may consider
topological properties of colorings. If f : X → Y is a function then we write f [S] for the image
of a set S ⊆ X and f(s) for the value at a point s ∈ X. By a perfect set we mean a compact,
nonempty, topological space with no isolated points.

2 On colorings

First we recall a simple result on open 2-colorings of analytic spaces (see Todorčević-Farah’s
book [5, p. 81]). We present a proof for completeness.

Proposition 2.1. Let X be an analytic space and let C ⊆ [X]2 be open. Then either there
exists a perfect C-homogeneous set or else X is a countable union of ¬C-homogeneous sets,
i.e. X =

⋃
n∈ω An where [An]2 ∩ C = ∅ for every n ∈ ω.

Proof. Let f : ωω → X be continuous and onto X. Define

C ′ = {s ∈ [ωω]2 : f [s] ∈ C}.

Note that if {x, y} ∈ C ′ then f(x) 6= f(y). Now observe that if ωω is a union of countably
many ¬C ′-homogeneous sets, then the same holds for X. Also, if P is a compact, perfect, C ′-
homogeneous subset of ωω then f � P is one-to-one and hence f [P ] is a perfect C-homogeneous
set. Thus we may assume that X = ωω and that X cannot be covered by countably many
¬C-homogeneous sets.
Let V consist of all x ∈ ωω such that some neighborhood of x is a countable union of ¬C-
homogeneous sets. By assumption, it follows that V 6= ωω. Let B = ωω \ V . Now we are
working in B: construct a tree T = {us : s ∈ 2<ω} of open subsets of B such that T defines a
Cantor set and {x, y} ∈ C whenever x ∈ us, y ∈ ut and s, t ∈ 2k are distinct, k < ω. Coming
to split us, where s ∈ 2k, we first find a pair {x, y} ∈ [us]2 ∩C (this is possible since us is not
¬C-homogeneous). Next, using the fact that C is open, enlarge x, y to open sets usa0, usa1,
preserving C-homogeneity. The perfect set obtained from T is evidently C-homogeneous.

The above result is no longer valid when we replace the word ”open” with ”closed”, see [5, p.
83]. Also, the above proposition cannot be strengthened for colorings of triples: there exists a
clopen 3-coloring of 2ω such that there are no uncountable homogeneous sets neither of this
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color nor of its complement, see Blass’ example [1]. In this example, the Cantor-Bendixson
rank of any homogeneous set is at most 1. Below we show that in this situation, there always
exists a countable ordinal which bounds the Cantor-Bendixson ranks of all homogeneous sets.
In fact this is true for Gδ colorings.
For a topological space Y and an ordinal α we denote by Y (α) the α-derivative of Y ; the
Cantor-Bendixson rank of Y is the minimal ordinal γ such that Y (γ+1) is empty.

Theorem 2.2. Let C be a Gδ N -coloring of a Polish space X. If for every countable ordinal
γ there exists a C-homogeneous set of the Cantor-Bendixson rank > γ then X contains a
perfect C-homogeneous set.

Proof. Fix a countable base B in X and fix a complete metric on X. Let C =
⋂

n∈ω Cn, where
each Cn is open and Cn+1 ⊆ Cn. We will construct a tree of open sets T = {us : s ∈ 2<ω}
with the following properties:

(i) clusai ⊆ us, clus ∩ cl ut = ∅ if s, t are incompatible and diam(us) < 2− length(s);

(ii) if k < ω and s0, . . . , sN−1 ∈ 2k are pairwise distinct then

{x0, . . . , xN−1} ∈ Ck

whenever xi ∈ usi , i < N ;

(iii) if k < ω then for each γ < ω1 there exists a C-homogeneous set P = Pk,γ such that
P (γ) ∩ us 6= ∅ for each s ∈ 2k.

We start with u∅ = X. Suppose that us has been defined for all s ∈ 26k. Fix γ < ω1 and
consider P = Pk,γ+1, as in (iii). Then for each s ∈ 2k the set P (γ)∩us is infinite. Fix S ⊆ P (γ)

such that |S ∩ us| = 2 for each s ∈ 2k. Next, enlarge each x ∈ S ∩ us to a small open set
vx ∈ B, contained in us, such that {y0, . . . , yN−1} ∈ Ck+1 whenever yi are taken from pairwise
distinct vx’s. This is possible, because Ck+1 is open. Let ϕ(γ) = {vx : x ∈ S}. This defines a
mapping ϕ : ω1 → [B]<ω. As B is countable, there is unbounded F ⊆ ω1 such that ϕ � F is
constant, say {vsai : s ∈ 2k, i < 2}, where vsai ⊆ us. Set usai = vsai. Observe that (i) holds
if we let vx’s to be small enough. Also (ii) holds, by the definition of vx’s. Finally, (iii) holds,
because P

(γ)
k,γ+1 ∩ ut 6= ∅ for t ∈ 2k+1 whenever γ ∈ F . By (ii) the perfect set obtained from

this construction is C-homogeneous.

Using the above theorem and arguments from the proof of Proposition 2.1 we obtain the
following (see Shelah [4, Remark 1.14]):

Corollary 2.3. Let 1 6 N < ω and let C be a Gδ N -coloring of an analytic space X. If there
exists an uncountable C-homogeneous set then there exists also a perfect one.
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3 Applications to convexity

Let X ⊆ E, where E is a real vector space. A subset K of X is a k-clique (k can be a cardinal
or just a natural number, we will use this notion for k < ω and k = ℵ0) if conv S 6⊆ X
whenever S ∈ [K]k. If E is finite-dimensional and k > dim E then we can define the notion
of a strong k-clique replacing conv S by int conv S in the definition. A finite set S ⊆ X is
(strongly) defected in X if conv S 6⊆ X (int conv S 6⊆ X). It is clear that the relation of strong
defectedness is open and defectedness is open provided that X is closed.
Applying the results of the previous section we get the following:

Theorem 3.1. (a) Let X be a closed set in a Polish linear space and let N < ω. If X does
not contain a perfect N -clique then all N -cliques in X are countable. Moreover, there exists
an ordinal γ < ω1 which bounds the Cantor-Bendixson ranks of all N -cliques in X.
(b) Let X be an analytic subset of Rm. If m < N < ω and X contains an uncountable strong
N -clique then X contains also a perfect one.

Theorem 3.1(a) was proved, under the stronger assumption that X is a countable union of
convex sets, by Kojman in [2].
In [3] we proved, in particular, that in a closed planar set either all cliques are countable or
there exists a perfect 3-clique. Here we prove the same for analytic sets, namely:

Theorem 3.2. Let X ⊆ R2 be analytic. If X contains an uncountable ℵ0-clique then X
contains a perfect 3-clique.

Proof. Fix a continuous function f : ωω → X onto X and fix an uncountable ℵ0-clique K ⊆ X.
We may assume that every line contains only countably many points of L: otherwise, for some
line L, X ∩L contains an uncountable ℵ0-clique, so it contains a perfect 2-clique (Proposition
2.1), which is also a 3-clique in X. Fix uncountable K ′ ⊆ ωω such that f � K ′ is a bijection
onto K.
A finite collection {u0, . . . , uk−1} of open subsets of ωω will be called relevant if each ui

contains uncountably many points of K ′, clui ∩ cl uj = ∅ whenever i < j < k and

int conv{f(x0), f(x1), f(x2)} 6⊆ X

whenever x0, x1, x2 are taken from pairwise distinct ui’s. To find a perfect 3-clique in X, it
suffices to construct a perfect tree of open sets in ωω with relevant levels. If P is a perfect set
obtained from such a tree then f � P is one-to-one and f [P ] is a perfect strong 3-clique.
Suppose that we have a relevant collection {u0, . . . , uk}. We have to show that it is possible to
split each ui to obtain again a relevant collection. We will split uk. Let L = K ′ ∩ uk and pick
yi ∈ ui for i < k. Define ci : [L]2 → 2 by letting ci(x0, x1) = 1 iff conv{f(x0), f(x1), f(yi)} 6⊆ X.
Observe that there are no infinite ci-homogeneous sets of color 0: if S ⊆ L is infinite then,
by Carathéodory’s theorem, there is s ∈ [S]3 such that f [s] is defected in X (because f [S]
is defected) and hence for some x0, x1 ∈ s we have conv{f(x0), f(x1), f(yi)} 6⊆ X, because
conv T ⊆

⋃
x,y∈T conv{x, y, p} for T ⊆ R2, p ∈ R2. Using k times the theorem of Dushnik-

Miller we obtain uncountable L′ ⊆ L which is ci-homogeneous of color 1 for i < k. Shrinking
L′ we may assume that each nonempty open subset of L′ is uncountable. Now choose disjoint
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open sets v0, v1 with cl vj ⊆ uk and vj ∩ L′ 6= ∅ for j < 2. To finish the proof we need the
following geometric property of the plane:

Claim 3.3. Let A,B ⊆ X ⊆ R2 and c ∈ R2 be such that A,B are uncountable, each line
contains countably many points of A∪B and conv{a, b, c} 6⊆ X whenever a ∈ A, b ∈ B. Then
there are a0 ∈ A, b0 ∈ B such that int conv{a0, b0, c} 6⊆ X.

Proof. Suppose this is not true. Observe that, replacing A and B if necessary, we may assume
that for some b0 ∈ B, [a, b0] ∪ [a, c] 6⊆ X whenever a ∈ A. Indeed, if [b, c] ⊆ X for some
b ∈ B then we take b0 = b, otherwise we take any a0 ∈ A and we replace A and B. Now,
without loss of generality, we may assume that b0 = (−1, 0), c = (1, 0) and A is contained in
(−1, 1) × (0, 1). Now, if some vertical line contains two elements of A then we are done: we
take a0 ∈ A such that some a1 ∈ A is below a0, then the relative interiors of segments [b0, a1],
[c, a1] are contained in the interior of conv{a0, b0, c}.
Assume that each vertical line contains at most one element of A. As A is uncountable, there
is a1 ∈ A such that arbitrarily close to a1 there are uncountably many points both on the left
and the right side of a1. Suppose now that e.g. {b0, a1} is defected in X. As [b0, a1] contains
only countably many points of A, we can find a2 ∈ A which is close enough to a1, on the left
side of a1 and not in [b0, a1]. If a2 is below [b0, a1] then we can set a0 = a1, otherwise we can
set a0 = a2.

Let i = 0. Using Claim 3.3 for A = f [v0∩L′], B = f [v1∩L′] and c = f(yi) we get xj ∈ vj such
that int conv{f(x0), f(x1), f(yi)} 6⊆ X. By continuity, shrink v0, v1 and enlarge yi to an open
set u′i ⊆ ui such that each triple selected from f [v0]× f [v1]× f [u′i] is (strongly) defected in X.
Repeat the same argument for each i < k, obtaining a relevant collection {u′0, . . . , u′k−1, v

′
0, v

′
1}

which realizes the splitting of uk. This completes the proof.

Actually, we have proved that if an analytic planar set X contains any uncountable ℵ0-clique
then either X contains a perfect strong 3-clique or else, X ∩ L contains a perfect 2-clique for
some line L.
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