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Abstract

The purpose of this paper is to investigate some separation properties
of sets with axiomatically defined convexity structures. We state a general
separation theorem for pairs of convexities, improving some known results.
As an application, we discuss separation properties of lattices, real vector
spaces and modules.
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1 Introduction

A classical theorem of Kakutani [8] says that two disjoint convex sets in a real
vector space can be separated by a halfspace (i.e. a convex set with the convex
complement). This theorem is also known as a geometric version of the Hahn-
Banach theorem. In this paper we study the Kakutani separation property which
means, roughly speaking, that disjoint sets of a certain type can be separated by
disjoint complementary sets of the same type (the type will be described by means
of convexity).

In 1952, J.W. Ellis [4] showed an abstract version of Kakutani’s theorem, for pairs of
convexities which are join-hull commutative (see the definitions below) and have a
certain property, similar to the well-known Pasch axiom. The separation is realized
by a set which is convex with respect to the first convexity and its complement
is convex with respect to the second one. In case where both convexities are the
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same, Chepoi [2] showed in 1993 that the join-hull commutativity assumption is
irrelevant.
Our purpose is to give some sufficient conditions for the Kakutani separation prop-
erty of spaces with pairs of convexities defined by finitary set operators (see the
definition below). We state a general separation theorem which is improves both the
results of Ellis and Chepoi. In particular, we show that Ellis’ theorem holds with-
out the assumption of join-hull commutativity. We also characterize the Kakutani
property of convexities in modules, defined by algebraic intervals [7]. This class of
convexities contains the real vector space convexity, lattice convexities in Boolean
algebras and other known convex structures.

2 Finitary set operators

Following van de Vel’s monograph [15], by a convexity in a set X we mean a
collection G ⊂ P(X) containing ∅, X, closed under arbitrary intersections and
closed under the unions of chains. The convex hull of a set A ⊂ X is the set

conv A =
⋂
{G ∈ G : A ⊂ G}.

The convex hull of a set {x1, . . . , xn} is called an n-polytope and is denoted by
[x1, . . . , xn]. A 2-polytope [a, b] is called the segment joining a, b. It is known [11]
that conv A =

⋃
{conv F : F is a finite subset of A}. A convexity G is called N -ary

(N ∈ N) if A ∈ G whenever conv F ⊂ A for all F ∈ [A]6N , where [A]6N denotes
the collection of at most N -element subsets of A. A space with 2-ary convexity
will be called geometrical. A convexity G in X is join-hull commutative [9] provided⋃

g∈G[g, x] ∈ G whenever G ∈ G and x ∈ X. It is known [9, Th. 2] and easy to show
that every join-hull commutative convexity is geometrical. For a general theory of
convexity we refer to [15] and [11].
Let X be a set and let D = [X]6N or D = [X]<ω, where [X]<ω denotes the
collection of all finite subsets of X. Any map r : D → P(X) such that F ⊂ r(F )
for all F ∈ D will be called a finitary set operator (FS-operator for short) in X.
An FS-operator r : D → P(X) is N -ary provided D ⊂ [X]6N . We say that a set
G ⊂ X is r-convex if for every F ∈ D ∩ P(G) we have r(F ) ⊂ G. Denote by Gr

the collection of all r-convex subsets of X. Clearly, this is a convexity in X; Gr is
N -ary if r is N -ary. We will say that a convexity G is defined by r if G = Gr. Every
convexity is defined by its polytope operator I = conv | [X]<ω. An N -ary convexity
is defined by its N -polytope operator IN = conv | [X]6N .
A set operator r is transitive provided for every y ∈ r({x}∪F ) we have r({y}∪F ) ⊂
r({x} ∪ F ). A transitive 2-ary operator is called an interval operator (see [2]).
Let r be an FS-operator. We set rA =

⋃
{r(F ) : F ∈ D∩P(A)}, rn+1A = r(rnA),

r0A = A.
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Proposition 2.1. If r is a finitary set operator in X then for every A ⊂ X we
have

conv A =
⋃
n∈N

rnA,

where conv is the convex hull operator associated with convexity Gr.

Proof. Let D = dom(r), the domain of r. Denote by B the set on the right hand
side. Clearly A ⊂ B and B ⊂ conv A. Let F = {a1, . . . , ak} ∈ D∩P(B), ai ∈ rniA.
If we set n = max{n1, . . . , nk} then F ⊂ rnA since E ⊂ rE for E ∈ D and thus
r(F ) ⊂ rn+1A ⊂ B. Hence B is r-convex.

3 Main results

We start with a general separation theorem concerning two arbitrary convexities
in a set.

Theorem 3.1. Let G and H be two convexities in a set X. The following conditions
are equivalent:

(a) For every x, y, z ∈ X and finite sets S, T ⊂ X such that x ∈ convG({z} ∪ S)
and y ∈ convH({z} ∪ T ) it holds that convG({y} ∪ S) ∩ convH({x} ∪ T ) 6= ∅.

(b) If A ∈ G and B ∈ H are disjoint then there exist disjoint sets G ∈ G and
H ∈ H such that A ⊂ G, B ⊂ H and G ∪H = X.

Proof. (a) =⇒ (b) Let G be a maximal G-convex set containing A disjoint from
B and let H be a maximal H-convex set containing B disjoint from G. We show
that G ∪ H = X. Suppose otherwise, i.e. there is some z ∈ X \ (G ∪ H). By the
maximality of G we get convG(G ∪ {z}) ∩ H 6= ∅ and therefore there exists an
h ∈ H and a finite set S ⊂ G with h ∈ convG({z} ∪ S). By the same argument
there is a g ∈ G and a finite set T ⊂ H with g ∈ convH({z} ∪ T ). By (a) we get
convG({g}∪S)∩convH({h}∪T ) 6= ∅ which means that G∩H 6= ∅; a contradiction.
(b) =⇒ (a) Let A = convG({y} ∪ S) and B = convH({x} ∪ T ). Suppose that
A ∩ B = ∅. By (b) there are disjoint complementary sets G ∈ G and H ∈ H with
A ⊂ G and B ⊂ H. If z ∈ G then x ∈ convG({z} ∪S) ⊂ G. This yields that z /∈ G.
By the same argument z /∈ H; a contradiction.

With respect to the above theorem we introduce the following definitions.

Definition 3.2. A pair (r, s) of FS-operators in X is said to satisfy the Pasch
axiom provided for each N,K < ω with [X]6N ⊂ dom(r), [X]6K ⊂ dom(s) and
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for every c, a1, . . . , aN−1, b1, . . . , bK−1, x, y ∈ X we have

x ∈ r(c, a1, . . . , aN−1) ∧ y ∈ s(c, b1, . . . , bK−1) =⇒
=⇒ r(y, a1, . . . , aN−1) ∩ s(x, b1, . . . , bK−1) 6= ∅.(P)

Here we write r(x1, . . . , xN ) and s(x1, . . . , xK) instead of r({x1, . . . , xN}) and
s({x1, . . . , xK}) respectively. If r = s then we say that r satisfies the Pasch ax-
iom.

Definition 3.3. A pair of convexities (G,H) in a set X has the Kakutani separation
property provided for each two disjoint sets A ∈ G and B ∈ H there exist disjoint
sets G ∈ G and H ∈ H such that A ⊂ G, B ⊂ H and G ∪H = X. If G = H then
we say that the convexity space (X,G) has the Kakutani separation property.

Theorem 3.1 now says that the Kakutani separation property for two convexities
is equivalent to the Pasch axiom for their polytope operators. A natural question
is whether the Kakutani property holds for convexities defined by FS-operators
satisfying the Pasch axiom. As we will show, the answer is affirmative for transitive
set operators. We give also a similar result for arbitrary FS-operators but the Pasch
axiom is then replaced with a more complicated formula.

Definition 3.4. We say that a pair (r, s) of FS-operators in X satisfies axiom (Q)
provided for each natural numbers N,K with [X]6N ⊂ dom(r), [X]6K ⊂ dom(s)
and for each b, y1, . . . , yK , h1, . . . , hK , a1, . . . , aN−1 we have

b ∈ s(y1, . . . , yK) ∧ ∀i 6 K hi ∈ r(yi, a1, . . . , aN−1) =⇒
=⇒ r(b, a1, . . . , aN−1) ∩ s(h1, . . . , hK) 6= ∅.(Q)

Setting hi = yi for i > 1 above we see that (Q) implies the Pasch axiom.

Proposition 3.5. If (r, s) is a pair of FS-operators satisfying the Pasch axiom
and such that r is transitive then (r, s) satisfy (Q).

Proof. Assume b ∈ s(y1, . . . , yK) and hi ∈ r(yi, a1, . . . , aN−1) for i 6 K. By the
Pasch axiom there exists x1 ∈ r(b, a1, . . . , aN−1)∩s(h1, y2, . . . , yK) and by the tran-
sitivity of r we have r(x1, a1, . . . , aN−1) ⊂ r(b, a1, . . . , aN−1). Inductively, we can
find x2, . . . , xN such that xi ∈ s(h1, . . . , hi, yi+1 . . . , yK) and r(xi, a1, . . . , aN−1) ⊂
r(b, a1, . . . , aN−1). For i = K we get r(b, a1, . . . , aN−1) ∩ s(h1, . . . , hK) 6= ∅.

We are going to show that axiom (Q) implies the Kakutani separation property.
For convenience we will use the following abbreviations: Ar[x] = convr(A ∪ {x})
and An

r [x] = rn(A ∪ {x}) (the same for s). By Proposition 2.1 we have Ar[x] =⋃
n∈N An

r [x] (and the same for s).
In the next two lemmas we assume that (r, s) is a pair of FS-operators satisfying
axiom (Q).
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Lemma 3.6. If H is s-convex and r(x, a1, . . . , aN−1) ∩ H 6= ∅, then for every
y ∈ Hs[x] we have r(y, a1, . . . , aN−1) ∩H 6= ∅.

Proof. The statement is clear for y ∈ H0
s [x] = H ∪{x}, so assume that r(y, a1, . . . ,

aN−1)∩H 6= ∅ whenever y ∈ Hn
s [x] and consider y ∈ Hn+1

s [x]. There are y1, . . . , yK

in Hn
s [x] with y ∈ s(y1, . . . , yK), where K is such that [X]6K ⊂ dom(s). Now, by

induction hypothesis, there exist hi ∈ r(yi, a1, . . . , aN−1) ∩ H, i 6 K. Applying
(Q) we have r(y, a1, . . . , aN−1) ∩ s(h1, . . . , hK) 6= ∅. Since H is s-convex, we get
r(y, a1, . . . , aN−1) ∩H 6= ∅.

Lemma 3.7. If G, H are such subsets of X that G is r-convex, H is s-convex and
Gr[x] ∩H 6= ∅ 6= G ∩Hs[x] for some x ∈ X, then G ∩H 6= ∅.

Proof. We use induction. Suppose that G ∩ H 6= ∅ whenever G is r-convex, H is
s-convex and Gn

r [x] ∩H 6= ∅ 6= G ∩Hs[x]. Assume Gn+1
r [x] ∩H 6= ∅ 6= G ∩Hs[x].

This means that r(u1, . . . , uN ) ∩H 6= ∅ for some u1, . . . , uN ∈ Gn
r [x], where N is

such that [X]6N ⊂ dom(r). Now, for i 6 N , we have

Gn
r [x] ∩Hs[ui] 6= ∅ 6= G ∩ (Hs[ui])s[x].

By induction hypothesis there are gi ∈ G∩Hs[ui] for i 6 N . Hence, as r(u1, . . . , uN )
∩H 6= ∅ and g1 ∈ Hs[u1], applying Lemma 3.6 we see that H ∩ r(g1, u2, . . . , uN ) 6=
∅. Inductively, using Lemma 3.6, we infer that H ∩ r(g1, . . . , gi, ui+1, . . . , uN ) 6= ∅
for i = 1, . . . , N . Particularly we get H ∩ r(g1, . . . , gN ) 6= ∅ which means that G
and H intersect, since G is r-convex.

Now we can state the main result.

Theorem 3.8. If (r, s) is a pair of finitary set operators satisfying axiom (Q) then
the pair of convexities (Gr,Gs) has the Kakutani separation property.

Proof. Let G be a maximal r-convex set containing A disjoint from B and let H
be a maximal s-convex set containing B disjoint from G. Observe that G∪H = X.
Indeed, otherwise there exists x ∈ X \ (G ∪ H) and by the maximality of G and
H we obtain Gr[x] ∩H 6= ∅ 6= G ∩Hs[x]. Hence, in view of Lemma 3.7, the sets
G, H intersect; a contradiction.

4 Consequences

Theorem 4.1. Let G,H be two 2-ary convexities in a set X. The following condi-
tions are equivalent:

(a) If a1 ∈ [c, a]G and b1 ∈ [c, b]H then [a, b1]G ∩ [b, a1]H 6= ∅.
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(b) If A ∈ G and B ∈ H are disjoint then there exist disjoint sets G ∈ G, H ∈ H
such that A ⊂ G, B ⊂ H and G ∪H = X.

Proof. Implication (a) =⇒ (b) follows from Theorem 3.8 and Proposition 3.5 by
setting r(a, b) = [a, b]G and s(a, b) = [a, b]H since polytope maps are transitive.
Implication (b) =⇒ (a) follows from Theorem 3.1.

J.W. Ellis has proved in [4] that the Kakutani separation property holds for two
join-hull commutative convexities such that their segments satisfy condition (a)
above. As every join-hull commutative convexity is 2-ary, Theorem 4.1 improves
the result of Ellis.
We say that two sets A,B ⊂ X are screened by C,D if A ⊂ C \D, B ⊂ D \C and
C ∪D = X (cf. [14]).

Theorem 4.2. Let X be a space with N -ary convexity. The following conditions
are equivalent:

(i) Every two disjoint convex subsets of X can be separated by complementary
halfspaces.

(ii) Every two disjoint N -polytopes can be separated by complementary halfspaces.

(iii) Every two disjoint N -polytopes can be screened by convex sets.

(iv) If x ∈ [c, a1, . . . , aN−1], y ∈ [c, b1, . . . , bN−1] then [y, a1, . . . , aN−1]∩[x, b1, . . . ,
bN−1] 6= ∅.

Proof. Implication (iv) =⇒ (i) follows from Theorem 3.8 by setting r = s = IN

(the N -polytope map). Since implications (i) =⇒ (ii) =⇒ (iii) are trivial, it remains
to show that (iii) =⇒ (iv).
We use the same argument as in the proof of Theorem 3.1. Suppose (iv) fails for
some x, y, c, a1, . . . , aN−1 and b1, . . . , bN−1. Let C,D be two convex sets screening
[y, a1, . . . , aN−1] and [x, b1, . . . , bN−1]. If c ∈ C then x ∈ [c, a1, . . . , aN−1] ⊂ C, since
C is convex. Hence c /∈ C; by the same argument c /∈ D. It follows that C∪D 6= X;
a contradiction.

V. Chepoi has stated in [2] the equivalence of (i), (ii) and the property of N -
polytopes which is in fact a reformulation of axiom (Q). Thus Theorem 4.2 im-
proves the result of Chepoi.

Theorem 4.3 (Chepoi [2]). Let X be a geometrical space defined by an interval
operator I : [X]62 → P(X). If I satisfies the Pasch axiom then X has the Kakutani
separation property.

Proof. This follows immediately from Theorem 3.8 and Proposition 3.5 by setting
r = s = I.
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5 Examples and applications

The convexity in a lattice. Let L be a lattice; we denote by ab and a + b the
infimum and the supremum of a, b in L, respectively. Set [a, b] = {x ∈ L : ab 6
x 6 a + b}. This defines a convexity in L (see [1], [13], [14]) and L is a geometrical
space with such a convexity. Observe ideals and filters are convex, more generally, a
convex set is an order-convex sublattice. It is easy to check that a proper halfspace is
either a prime filter or a prime ideal (see [13]). Recall that a lattice L is distributive
provided a(b + c) = (ab) + (ac) for every a, b, c ∈ L.
Using Theorem 4.3 we are able to give a short proof of Stone-Birkhoff’s separation
theorem.

Theorem 5.1. A lattice has the Kakutani property iff it is distributive.

Proof. Let L be a lattice, assume first that L has the Kakutani property. Suppose
that there are a, b, c ∈ L with x = (ab) + (ac) < a(b + c) = y. Thus y /∈ [ab, ac]
so there exists a halfspace H ⊂ L with y /∈ H ⊃ [ab, ac]. Observe that a ∈ L \H
since x ∈ H and y ∈ [x, a] ∩ (L \ H). Hence b, c ∈ H since ab ∈ H ∩ [a, b] and
ac ∈ H ∩ [a, c]. Now b + c ∈ H and y ∈ [x, b + c] ⊂ H which gives a contradiction.
Now assume that L is distributive and consider a, a1, b, b1, c ∈ L with a1 ∈ [c, a]
and b1 ∈ [c, b]. We have ac 6 a1 6 a + c and bc 6 b1 6 b + c, whence

(1) a1b 6 (a + c)b = (ab) + (cb) 6 a + b1.

Similarly ab1 6 a1 + b. We set x = (a + b1)(a1 + b). Clearly x 6 a1 + b and by (1)
we get x > a1b(a1 + b) = a1b. Hence x ∈ [a1, b]. By the same argument x ∈ [a, b1].
Now Theorem 4.3 implies that L has the Kakutani property.

Geometrical modules. Let us consider a ring R (with unity, but not necessarily
commutative). Following Jamison [7] we say that a subset J of R is an algebraic
interval provided

(i) 0, 1 ∈ J and

(ii) α, β, γ ∈ J implies γα + (1− γ)β ∈ J .

Fix an R-module M . For a, b ∈ M we set

[a, b]J = {λa + (1− λ)b : λ ∈ J}.

This defines a 2-ary convexity GJ in M ; elements of GJ will be called J-convex.
Observe that (i) and (ii) imply that the set [a, b]J defined above is in fact the
segment joining a, b with respect to GJ . Any module over a ring R with such
defined convexity will be called a geometrical module over (R, J). In particular R
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alone is a geometrical module over itself. Observe that J is the segment joining
0, 1 ∈ R.
We shall state an algebraic condition for geometrical modules equivalent to the
Kakutani property. First we present some examples of geometrical modules.

Examples 5.2. (a) Let R denote the field of reals. If J = [0, 1] then the convexity
GJ in a real vector space is the usual one. If J = [0, 1] ∩ Q then it is the rational
convexity. Finally, J = { k

2n ∈ [0, 1] : k, n ∈ N} defines the Jensen convexity (see
also [3], [5]).
(b) Let B be a Boolean algebra and let J = B. Denote by 4 the symmetric
difference in B. Then (B,4, ∗, 0, 1) is a (Boolean) ring. One can easily check that
[a, b]J = {x ∈ B : ab 6 x 6 a + b}. Hence this convexity is the same as the
convexity defined by the lattice structure in B.
(c) Let R be the ring of all real measurable functions defined on a measurable space
(T,M). We set J = {χA : A ∈ M} where χA denotes the characteristic function of
A. It is easily seen that χCχA+(1−χC)χB = χG where G = (A∩C)∪(B\C), hence
J is an algebraic interval. A J-convex set is called decomposable; decomposable
subsets of L1(µ), the space of µ-integrable real functions, were introduced in [6].

Theorem 5.3. Let R be a ring and J ⊂ R. The following conditions are equivalent:

(a) Every geometrical module over (R, J) has the Kakutani property.

(b) J (with the relative convexity) has the Kakutani property.

(c) For each α, β ∈ J there exists γ ∈ J with (1− α)β = γ(1− αβ).

Proof. (a) =⇒ (b) As we have already mentioned, J is a convex subset of R. Hence
disjoint convex subsets of J are convex in R and the Kakutani property of J follows
from that of R.
(b) =⇒ (c) Fix α, β ∈ J . Notice that αβ ∈ [0, β]J ⊂ J . Suppose that β /∈ [1, αβ]J .
As {β} and [1, αβ]J are convex and disjoint, there exists a halfspace H ⊂ J with
β /∈ H and [1, αβ]J ⊂ H. If 0 ∈ H then β = β · 1 + (1 − β) · 0 ∈ H, if 0 /∈ H
then αβ = αβ + (1 − α) · 0 /∈ H. Both cases yield a contradiction. It follows that
β ∈ [1, αβ]J , i.e. there exists γ ∈ J with β = γ + (1 − γ)αβ. Modifying this
expression we get (1− α)β = γ(1− αβ).
(c) =⇒ (a) In view of Theorem 4.3 we must verify the Pasch axiom. Fix a geo-
metrical module M over (R, J) and a, a1, b, b1, c ∈ M such that a1 ∈ [c, a]J and
b1 ∈ [c, b]J . We have

a1 = αa + (1− α)c, b1 = βb + (1− β)c,

for some α, β ∈ J . Let γ ∈ J be as in condition (c), i.e.

(1) β = αβ + γ(1− αβ) = (1− γ)αβ + γ.
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We set

(2) δ = (1− γ)α.

Observe that δ ∈ [0, α]J ⊂ J and γ = (1− δ)β. Now take

x1 = (1− γ)a1 + γb, x2 = (1− δ)b1 + δa.

Notice that x1 ∈ [a1, b]J and x2 ∈ [a, b1]J . It remains to check that x1 = x2. Let us
compute the difference x1 − x2. We have

x1 − x2 = (1− γ)
(
αa + (1− α)c

)
+ γb− (1− δ)

(
βb + (1− β)c

)
− δa

= δa + (1− γ)(1− α)c + γb− γb− (1− δ)(1− β)c− δa

=
(
(1− γ)(1− α)− (1− δ)(1− β)

)
c.

Now, applying (1) and (2) we see that

(1− δ)(1− β) = 1− δ − β + (1− γ)αβ = 1− δ − β + β − γ

= 1− γ − (1− γ)α = (1− γ)(1− α).

Hence x1 = x2 and this completes the proof.

Corollary 5.4. (a) If J = F ∩ [0, 1] where F is a subfield of reals then every real
vector space with J-convexity has the Kakutani property.
(b) (Palés [10]) The Jensen convexity in R does not have the Kakutani property.
(c) For every measure µ, the ring of µ-measurable real functions, with the convexity
of decomposable sets, has the Kakutani property. The same is true for L1(µ).

Proof. (a) is clear, by condition (c) of Theorem 5.3.

(b) follows from the equality (1− 1
2 ) 1

2

/
(1− 1

2
1
2 ) = 1

3 .

(c) Equality (1− χA)χB = γ(1− χAχB) is valid for γ = χB . Moreover, L1(µ) is a
decomposable subset of the ring of all µ-measurable functions.
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