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Abstract. Every lattice and, in particular, every Boolean algebra is a convexity space
with a naturally defined convexity structure. We characterize complete Boolean algebras
as the only S3 convexity spaces having an extension property for certain classes of
convexity preserving maps. This answers our question posed in [1]. Our characterization
provides also a short proof of Sikorski’s Extension Theorem for homomorphisms of
Boolean algebras.

1. Introduction

By a convexity on a set X we mean, as in [7], a collection G ⊂ P(X) containing ∅, X,
closed under arbitrary intersections and closed under the unions of chains. The elements of
G are called convex sets. The convex hull of a set A ⊂ X is convA =

∩
{G ∈ G : A ⊂ G}.

The convex hull of {a, b} is called the segment joining a, b and denoted by [a, b]. The
pair (X,G) is called a convexity space. A convexity space X is S4 provided for each two
disjoint convex sets A,B ⊂ X there exists a halfspace (i.e. a convex set with the convex
complement) H ⊂ X such that A ⊂ H and B ⊂ X \H. A convexity space is S3 provided
all one-point subsets are convex and every convex set is an intersection of halfspaces (this
differs from the definition of S3 in [7], where singletons are not presumed to be convex). A
convexity space is called binary (or its Helly number is at most two) if every finite linked
(i.e. meeting two by two) collection of its convex sets has nonempty intersection. This is
equivalent to the condition [a, b]∩ [a, c]∩ [b, c] ̸= ∅ for every a, b, c ∈ X, see [7, p. 167]. A
map of convexity spaces f : X → Y is called convexity preserving (cp for short) provided
f−1(G) is convex in X whenever G is convex in Y . Equivalently: f(conv S) ⊂ conv f(S)
for every finite S ⊂ X, see e.g. [7, p. 15]. For a general theory of convexity we refer to [7]
or [3].

Our fundamental examples of convexity spaces will be lattices and, in particular, Boolean
algebras. Namely, if L is a lattice then the collection of all its order-convex sublattices
forms a convexity on L, which will be referred to as the natural convexity on a lattice
(see [5, 6]). Observe that [a, b] = {x ∈ L : a ∧ b ⩽ x ⩽ a ∨ b} and conv S = [inf S, supS]
for a finite set S. A subset G ⊂ L is convex iff for every a, b ∈ G, [a, b] ⊂ G. In particular
all ideals and filters are convex. Every lattice is binary, see [6]. A lattice is S4 iff it is
distributive, see [5, 6]. Every lattice homomorphism is convexity preserving. Conversely,
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a cp map of lattices f : K → L is a homomorphism if f(0K) = 0L or f(1K) = 1L or f is
order-preserving, see [6].

A result in [1] (Theorem 2.3 below) says that certain maps defined on subsets of S4

convexity spaces and with values in a complete Boolean algebra can be extended to
convexity preserving maps onto the whole space. The proof used the theorem of Sikorski
[2] on injectivity of complete Boolean algebras. Here we give a straightforward proof,
obtaining the theorem of Sikorski as a corollary. The mentioned extension theorem implies
in particular that every complete Boolean algebra B has the following property: for every
S4 convexity space X, every cp map f : G → B defined on a convex subset of X, can be
extended to a cp map f : X → B. We shall say that a convexity space Y is a convexity
absolute extensor if it has the above extension property. In [1] we asked whether complete
Boolean algebras are the only S3 convexity spaces satisfying the assertion of Theorem
2.3 below. Here we prove that every S3 convexity absolute extensor is isomorphic to a
complete Boolean algebra, thus giving a positive answer. These results together provide
an external characterization of complete Boolean algebras in the category of S3 convexity
spaces.

2. Extension theorem

We start with two auxiliary lemmas.

Lemma 2.1. In every Boolean algebra, the following equivalence holds:

conv(A ∪ B) ∩ conv(C ∪D) ̸= ∅ ⇐⇒ conv(A ∪ ¬D) ∩ conv(C ∪ ¬B) ̸= ∅,
where ¬S = {¬s : s ∈ S} and ¬s denotes the complement of s.

Proof. Suppose that conv(A ∪ ¬D) ∩ conv(C ∪ ¬B) = ∅ and let H be such a halfspace
that A ∪ ¬D ⊂ H and (C ∪ ¬B) ∩H = ∅. Then D ∩H = ∅ and B ⊂ H. It follows that
H separates conv(A ∪ B) from conv(C ∪D). □
Lemma 2.2. Every linked collection of segments in a complete Boolean algebra has
nonempty intersection.

Proof. Let {[aα, bα]}α<λ be linked. We can assume that aα ⩽ bα. Now [aα, bα]∩[aβ, bβ] ̸= ∅
implies aα ⩽ bβ. Setting x = supα<λ aα we get x ∈

∩
α<λ[aα, bα]. □

Theorem 2.3. Let B be a complete Boolean algebra and let X be an S4-convexity space.
If M ⊂ X then every map f : M → B satisfying the condition

(I) ∀ S, T ∈ [M ]<ω
(
conv S ∩ conv T ̸= ∅ =⇒ conv f(S) ∩ conv f(T ) ̸= ∅

)
,

can be extended to a convexity preserving map f : X → B.

Proof. Observe that the union of a chain of maps satisfying condition (I) also satisfies
(I) and every map satisfying (I) is convexity preserving. Thus, it is enough to show that
for a fixed x ∈ X \M there exists a map g : M ∪ {x} → B satisfying condition (I) and
extending f . Consider the collection of intervals

A = {conv(f(S) ∪ ¬f(T )) : S, T ∈ [M ]<ω, conv S ∩ conv(T ∪ {x}) ̸= ∅}.
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Let Si, Ti ∈ [M ]<ω be such that conv Si ∩ conv(Ti ∪ {x}) ̸= ∅, where i = 0, 1. Observe
that conv(S0 ∪ T1) ∩ conv(S1 ∪ T0) ̸= ∅. Indeed, otherwise by S4 there exists a halfspace
H ⊂ X with S1 ∪ T0 ⊂ H and S0 ∪ T1 ⊂ X \ H. Consequently, if e.g. x ∈ H then
conv S0 ∩ conv(T0 ∪ {x}) = ∅, a contradiction. Now, condition (I) gives

conv(f(S0) ∪ f(T1)) ∩ conv(f(S1) ∪ f(T0)) ̸= ∅.
Applying Lemma 2.1 we get

conv(f(S0) ∪ ¬f(T0)) ∩ conv(f(S1) ∪ ¬f(T1)) ̸= ∅.
Thus we have shown that the collection A is linked.

As B is complete, we can find a point y ∈
∩
A. Define g : M∪{x} → B by setting g|M = f

and g(x) = y. It remains to check that g satisfies condition (I). Let S, T ∈ [M ]<ω be such
that conv S ∩ conv(T ∪ {x}) ̸= ∅. Then y ∈ conv(f(S) ∪ ¬f(T )) and applying Lemma
2.1 for A = {y}, B = f(T ), C = f(S), D = ∅, we get conv g(T ∪ {x}) ∩ conv g(S) ̸= ∅.
This completes the proof. □

In the special case when the domain is a distributive lattice, it is easy to observe that
every partial lattice homomorphism satisfies condition (I). Thus, applying Theorem 2.3,
we obtain the classical extension theorem of Sikorski [2].

Corollary 2.4. Let K be a sublattice of a distributive lattice L and let B be a complete
Boolean algebra. Then every homomorphism f : K → B can be extended to a homomor-
phism f : L → B.

3. Convexity absolute extensors

We shall use the following characterization of Boolean algebras, which is an immediate
consequence of [6, Thm. 3.5].

Lemma 3.1. A convexity space Y is isomorphic to a Boolean algebra iff it is S3, binary
and complemented, i.e. for every a ∈ Y there exists b ∈ Y with [a, b] = Y .

We shall also use the fact that every S3-space is inner transitive [4], i.e. it satisfies the
formula (∀ a, b, c, d) d ∈ [a, b] ∧ c ∈ [a, d] =⇒ d ∈ [c, b]. Indeed, d /∈ [c, b] would imply
that there is a halfspace H with d /∈ H ⊃ [c, b] and then either d /∈ [a, b] or c /∈ [a, d].

Theorem 3.2. Every S3 convexity absolute extensor is isomorphic to a complete Boolean
algebra.

Proof. Let Y be an S3 convexity absolute extensor. We first check the assumptions of
Lemma 3.1.

Fix a ∈ Y and consider a space P = Y ∪{p}, where p /∈ Y , with the convexity G = {A ⊂
P : either |A ∩ {a, p}| = 1 or A = P}. It is easy to check that (P,G) is S4 and Y ∈ G.
Let f : Y → Y be the identity map. Then f is cp. Let f : P → Y be a cp extension of f .
Since Y ⊂ [a, p] in P we get Y ⊂ [a, f(p)] in Y . Thus f(p) is a complement of a.

We check that Y is binary. Fix a, b, c ∈ Y . Consider a subspace Q = G∪{q} of R×R with
the lattice convexity (with coordinate-wise order), where G = {(0, 0), (2, 0), (1, 1), (3, 1)},
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q = (4, 0). It is easy to check that Q is S4 and G is convex in Q. Now define f : G → Y
by setting f(0, 0) = ¬c, f(2, 0) = b, f(1, 1) = ¬a, f(3, 1) = c, where ¬a,¬c denote the
complements of a, c (which are unique by S3). One can easily observe that f is cp. If
f : Q → Y is an extension of f then setting y = f(q) we get b, c ∈ [¬a, y] and b ∈ [¬c, y].
Applying inner transitivity we obtain y ∈ [a, b] ∩ [a, c] ∩ [b, c].

Thus, applying Lemma 3.1, we see that Y is isomorphic to a Boolean algebra. Fix a
partial order ⩽ on Y induced by a given isomorphism. We show that every maximal
linearly ordered subset L ⊂ Y is complete, which implies the completeness of Y itself.
Consider A,B ⊂ L such that a < b for all a ∈ A, b ∈ B. Let X = A ∪ B ∪ {p} where
p /∈ L and define a linear order ⩽∗ on X by letting

x ⩽∗ y iff


x = p or

x ∈ B & y ∈ A or

x, y ∈ A & x ⩽ y or

x, y ∈ B & y ⩽ x.

Every linearly ordered set is an S4 convexity space (being a distributive lattice). Define
f : A ∪ B → Y by setting f(a) = ¬a for a ∈ A and f(b) = b for b ∈ B. Clearly, f is cp;
if f : X → Y is a cp extension of f then by inner transitivity we get a ⩽ f(p) ⩽ b for all
a ∈ A, b ∈ B. Now, if B is the set of all upper bounds of A then f(p) = supA in L. □
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