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Abstract. We characterize complete metric absolute (neighborhood) retracts in terms
of existence of certain maps of CW-polytopes. Using our result, we prove that a com-
pact metric space with a convex and locally convex simplicial structure is an AR. This
answers a question of Kulpa from [5]. As another application, we prove that the hy-
perspace of closed subsets of a separable Banach space endowed with the Wijsman
topology is an absolute retract.

1. Introduction

A metrizable space X is an absolute (neighborhood) retract (briefly: AR (ANR)) if it
is a retract of (an open subset of) a normed linear space containing X as a closed
subset. There are several known characterizations of ANR’s stated in terms of maps
of CW-polytopes. Probably the most well-known is Dugundji-Lefschetz’ theorem about
realizations of polytopes. Another result in this spirit is due to Nhu [7].

We introduce a metric property (Property (B) below) which, roughly speaking, says that
there is a sequence of maps of CW-polytopes with some ‘compatibility’ conditions, related
to the metric. We prove (Section 2) that a complete metric space with this property is an
ANR; a stronger version of Property (B) (called Property (B∗)) implies that the space
is an AR. It appears that Property (B) characterizes ANR’s among complete metric
spaces; we also give an example of a (non-complete) metric space with Property (B),
which is not an ANR. Property (B) does not require the existence of extensions of any
maps, which is required in Dugundji-Lefschetz’ characterization. In Section 3 we show
that the realization property of Dugundji-Lefschetz implies Property (B). This gives a
proof of Dugundji-Lefschetz’ theorem in the case of completely metrizable spaces.

The last section is devoted to applications. First we consider simplicial structures intro-
duced by Kulpa [5] and we show that a compact metric space with a convex and locally
convex simplicial structure is an AR. This solves Kulpa’s problem from [5].

As a second application, we study hyperspaces of closed sets endowed with the Wijsman
topology. This topology is important and useful in the analysis of set convergence and
in optimization theory; for references see Beer’s book [1]. We show that if a given metric
space has the property that after removing finitely many closed balls, the remaining part
is path-wise connected, then its Wijsman hyperspace has Property (B∗). Consequently,
the Wijsman hyperspace of a separable Banach space is an absolute retract.
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1.1. Notation. We denote by [X]<ω and [X]n the collection of all finite and n-element
subsets of X respectively; ω denotes the set of all nonnegative integers. Given any set S
we shall denote by Σ(S) the union of all geometric simplices with vertices in S, endowed
with the CW-topology. More precisely, Σ(S) is the set of all formal convex combinations
of the form

∑
s∈S λss, where λs = 0 for all but finitely many s ∈ S; a subset U ⊂ Σ(S)

is open if its intersection with any simplex σ of Σ(S) is open in σ (with respect to
the standard topology on σ). When S is finite, Σ(S) is called the geometric or abstract
simplex with the set of vertices S. A subsimplex (or a face) of a simplex Σ(S) is, by
definition, a simplex Σ(T ), where T ⊂ S. The boundary of a simplex σ = Σ(S) is
bdσ =

⋃
T⊂S, T 6=S Σ(T ).

An abstract polytope is a space of the form P =
⋃

T∈A Σ(T ), where A is any family of
sets, endowed with the CW-topology, i.e. P is a subspace of Σ(S), where S =

⋃
A. S

is the set of vertices of P and we write S = vertP . Observe that P can also be written
as

⋃
T∈A0

Σ(T ), where A0 = {T : (∃ T ′ ∈ A) T ∈ [T ′]<ω}. A subpolytope of an abstract
polytope P =

⋃
T∈A Σ(T ) is a polytope Q =

⋃
R∈B Σ(R) such that every simplex of

Q (i.e. a face of Σ(R) for some R ∈ B) is also a simplex of P , i.e. for every R ∈ B
there exists T ∈ A with R ⊂ T . A polytope P is convex if P =

⋃
T∈[S]<ω Σ(T ), where

S = vertP . Clearly, this agrees with the definition of the convex hull of S, when we
consider a polytope as a subset of a real linear space.

By a polytope in a topological space Y we mean a continuous map ϕ : P → Y of an
abstract polytope P . We say that S = vertP is the set of vertices of ϕ and we write
S = vertϕ. Sometimes ϕ is called a singular polytope in Y or a realization of P in Y . We
define the notion of subpolytope, convex polytope and simplex like in the abstract case.

2. Main result

Let U be a collection of subsets of a topological space Y . We write A ≺ U whenever A is
a set contained in some element of U . A polytope ϕ in Y is U-dense if U ∩ϕ[vertϕ] 6= ∅
whenever U ∈ U \ {∅}. Let U ,V be two open covers of Y . We say that a polytope
ϕ is (U ,V)-compatible if for every finite set S ⊂ vertϕ we have Σ(S) ⊂ domϕ and
ϕ[Σ(S)] ≺ V whenever ϕ[S] ≺ U . By meshU we mean the supremum of diameters of
members of U .

We say that a metric space Y has Property (B) provided there exists a sequence of open
covers {Un}n∈ω satisfying the following conditions:

(a) for each n ∈ ω, Un+1 is a star-refinement of Un,
(b)

∑
n∈ω meshUn < +∞,

(c) for each n ∈ ω there is m > n+ 5 and there exists a Um+1-dense polytope in Y ,
which is simultaneously (Um,Un+5)- and (Un+1,Un)-compatible.

If additionally, for some n ∈ ω there is a convex polytope satisfying (c) then we say that
Y has Property (B∗).

Theorem 1. Every complete metric space with Property (B) is an absolute neighborhood
retract. A complete metric space with Property (B∗) is an absolute retract.
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Proof. We start with two lemmas. We assume here that Y is a complete metric space
with Property (B), A is a closed subset of a metrizable space X and f : A→ Y is a fixed
continuous map.

Lemma 1. Let n > 0 and suppose that g : X → Y is a continuous map such that g|A is
Un+3-close to f . Then there exists a continuous map g′ : X → Y which is Un−1-close to
g and Un+4-close to f on A.

Proof. Let m > n+ 5 be as in condition (c) of Property (B). Set U = Um+1. For U ∈ U
define

U∗ = f−1[U ] ∪ (g−1[star(U,Un+3)] \ A).

Observe that {U∗}U∈U is an open cover of X. Let {hU}U∈U be a locally finite partition
of unity such that h−1

U [(0, 1]] ⊂ U∗ for U ∈ U . By condition (c) of Property (B), there
exists a U -dense polytope ϕ in Y which is simultaneously (Um,Un+5)- and (Un+1,Un)-
compatible. For each U ∈ U \ {∅} choose yU ∈ vertϕ such that ϕ(yU) ∈ U .

Fix t ∈ X and consider Ut = {U ∈ U : hU(t) > 0}. Then g(t) ∈ star(U,Un+3) for U ∈ Ut.
Let St = {yU : U ∈ Ut}. Then ϕ[St] ⊂ star(g(t),Un+2) ≺ Un+1 and hence Σ(St) ⊂ domϕ.
Define a map g′ : X → Y by setting

g′(t) = ϕ
(∑

U∈U

hU(t)yU

)
.

Clearly g′ is continuous and Un−1-close to g since {g′(t)}∪ϕ[St] ≺ Un and {g(t)}∪ϕ[St] ≺
Un+1.

Suppose now that t ∈ A. Then f(t) ∈
⋂
Ut and consequently ϕ[St]∪{f(t)} ⊂ star(f(t),U)

≺ Um. Thus ϕ[St] ∪ {g′(t)} ∈ ϕ[Σ(St)] ≺ Un+5 which means that g′|A is Un+4-close to
f . �

Lemma 2. There exists an open set W ⊃ A and a continuous map g : W → Y which is
U4-close to f on A. If Y has Property (B∗) then we may assume that W = X.

Proof. Applying condition (c) of Property (B) (for n = 0) we get m > 5 and a polytope
ϕ which is Um+1-dense and (Um,U5)-compatible. Set U = Um+1. By paracompactness,
there is a locally finite open cover {HU}U∈U of X such that A∩ clHU ⊂ f−1[U ] for every
U ∈ U . Set

VU = HU \
⋃
{clHG : G ∈ U & A ∩ clHG ∩HU = ∅}.

Observe that each VU is open in X, A ⊂
⋃

U∈U VU and VU1 ∩VU2 6= ∅ implies U1∩U2 6= ∅.
The last property follows from the fact that if VU1∩VU2 6= ∅ then there is t ∈ A∩clHU1∩
HU2 and consequently f(t) ∈ U1 ∩ U2. Let W =

⋃
U∈U VU and let {hU}U∈U be a locally

finite partition of unity in W such that h−1
U [(0, 1]] ⊂ VU for every U ∈ U .

Now, for each U ∈ U \ {∅} choose yU ∈ vertϕ so that ϕ(yU) ∈ U . Define

(∗) g(t) = ϕ
(∑

U∈U

hU(t)yU

)
, t ∈ W.

Observe that g is well-defined, since if Ut = {U ∈ U : hU(t) > 0} then {ϕ(yU) : U ∈ Ut} ⊂
star(U0,U), where U0 ∈ Ut is arbitrary (because U1 ∩ U2 6= ∅ whenever U1, U2 ∈ Ut) and
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consequently Σ({yU : U ∈ Ut}) ⊂ domϕ. As in the proof of the previous Lemma, one
can check that g|A is U4-close to f .

Finally, if Y has Property (B∗) then we may assume that ϕ is a convex polytope, so
formula (∗) well defines a continuous map on the entire space X. Thus, in this case we
can set W = X. �

Theorem 1 follows immediately from Lemma 1 and Lemma 2. Indeed, using Lemma 2 we
get a continuous map g0 : W → Y which is U4-close to f , where W ⊃ A is open. If Y has
Property (B∗) then W = X. Now we can use inductively Lemma 1 to obtain a sequence
of continuous maps gn : W → Y such that gn+1 is Un−1-close to gn and Un+4-close to
f on A. By condition (b) of Property (B), the sequence {gn}n∈ω converges uniformly
to a continuous map f ′ : W → Y which is an extension of f (here we have used the
completeness of Y ). �

We now show that every metric ANR/AR has Property (B)/(B∗).

Proposition 1. Let Y be a metric ANR. Then there exists a polytope ϕ in Y with
vertϕ = Y and there exists a sequence {Un}n∈ω of open covers of Y such that for each
n ∈ ω, meshUn 6 2−n, Un+1 is a star-refinement of Un and ϕ is (Un+1,Un)-compatible.
If additionally, Y is an AR then ϕ is a convex polytope.

Proof. By the theorem of Arens-Eells we can assume that Y is a closed subset of a
normed linear space E. Let r : W → Y be a retraction, where W ⊃ Y is open in E.
Define

P =
⋃
{Σ(S) : S ∈ [Y ]<ω & convE S ⊂ W} ⊂ Σ(Y ).

Let ψ : P → E be the unique affine map with ψ|Y = idY . Then ϕ = rψ is a polytope in
Y with vertϕ = Y . Let U0 be any open cover of Y with mesh 6 1. Suppose that covers
U0, . . . ,Un are already defined so that meshUi < 2−(i+1) and they satisfy conditions
(a) and (b). By the continuity of r, there exists an open cover V of W , consisting of
convex sets and such that {r[V ] : V ∈ V} is a refinement of Un. Now let Un+1 be a
star-refinement of Un with mesh 6 2−(n+1), which is also a refinement of V . Then ϕ is
(Un+1,Un)-compatible. Finally, if Y is an AR then W = E and hence P = Σ(Y ). �

Below we describe an example of a separable metric space with Property (B∗), which is
not an ANR. Thus, the completeness assumption in Theorem 1 is essential.

Example 1. Consider the Hilbert cube Q = [0, 1]ω endowed with the product metric.
There exists a sequence {An}n∈ω of pairwise disjoint dense convex subsets of Q. Indeed,
if {Bn}n∈ω is a decomposition of ω into infinite sets then we can set

An = {x ∈ Q : ∃ i ∈ Bn

(
x(i) > 0 & (∀ j > i) x(j) = 0

)
}.

Now, for each n ∈ ω choose finite Dn ⊂ An which is 1/n-dense in Q and define Y =⋃
n∈ω convDn. Clearly, Y is dense in Q, so Q is the completion of Y .

Let {Un}n∈ω be a sequence of finite open covers of Y such that meshUn 6 2−n, Un+1 is
a star-refinement of Un and each element of Un is of the form U ∩ Y , where U ⊂ Q is
convex. Let ϕk : Σ(Dk) → convDk ⊂ Y be the unique affine map which extends idDk

.
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Then ϕk is (Un,Un)-compatible for each n ∈ ω; moreover ϕk is Un-dense for a sufficiently
large k. It follows that Y has Property (B∗). On the other hand, Y is not an ANR, since
it is not locally path-wise connected at any point: as no continuum can be decomposed
into countably many nonempty closed subsets, every path in Y is contained in convDn

for some n, but these sets are pairwise disjoint and nowhere dense in Y .

3. A relation to Dugundji-Lefschetz’ theorem

We recall the theorem of Lefschetz [6] and Dugundji [4] characterizing metric ANR’s,
stated in terms of realizations of polytopes. Let P be a CW-polytope and let Q be a
subpolytope of P . A continuous map ϕ : Q → Y is a partial realization of P relative
to a cover U , provided Q contains all the vertices of P and for each simplex σ of P ,
ϕ[Q ∩ σ] ≺ U . If Q = P then ϕ is a full realization relative to U . Dugundji-Lefschetz’
theorem says that a metrizable space Y is an ANR if and only if every open cover U
of Y has an open refinement S(U) such that for every CW-polytope P , every partial
realization of P relative to S(U) can be extended to a full realization of P relative to U .

We show that every metric space with the realization property stated above, has Property
(B). This provides a proof of the ”if” part of Dugundji-Lefschetz’ theorem, in the case
of completely metrizable spaces.

Fix a metric space Y with the above realization property. Let U0 be any open cover of
Y with finite mesh and, inductively, let Un+1 be an open star-refinement of S(Un) with
mesh 6 2−n. Clearly, the sequence {Un}n∈ω satisfies conditions (a), (b) of Property (B).
We check (c). Fix n ∈ ω and set m = n+6. Choose any Um+1-dense set S ⊂ Y . Consider

P1 =
⋃
{Σ(T ) : T ∈ [S]<ω & T ≺ Um}.

Clearly, P1 is a CW-polytope, S is a subpolytope of P1 and the identity map idS : S → Y
is a partial realization of P1 relative to Um. As Um is a refinement of S(Un+5), there exists
a full realization ϕ1 : P1 → Y of P1 relative to Un+5 with ϕ1|S = idS. Observe that ϕ1 is
(Um,Un+5)-compatible. Define

P2 =
⋃
{Σ(T ) : T ∈ [S]<ω & ϕ1[Σ(T ) ∩ P1] ≺ S(Un)}.

Then P1 is a subpolytope of P2 and ϕ1 is a partial realization of P2 relative to S(Un).
Let ϕ2 : P2 → Y be a full realization of P2 relative to Un which extends ϕ1. Clearly, ϕ2

is (Um,Un+5)-compatible. Fix T ∈ [S]<ω and U ∈ Un+1 with T ⊂ U . Set Q = Σ(T ) ∩ P1.
For each face σ of Σ(T ) with σ ⊂ Q there is Wσ ∈ Un+5 with ϕ1[σ] ⊂ Wσ. We have

ϕ1[Q] ⊂ U ∪
⋃
{Wσ : σ is a face of Σ(T ) with σ ⊂ Q} ⊂ star(U,Un+5),

thus ϕ1[Q] ≺ S(Un). Hence Σ(T ) is a simplex in P2 and ϕ2[Σ(T )] ≺ Un. It follows that
ϕ2 is (Un+1,Un)-compatible. This shows that condition (c) of Property (B) is satisfied.
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4. Applications

4.1. Simplicial structures. Following Kulpa [5] we say that a collection F consisting
of simplices in a space Y is a simplicial structure in Y provided σ ∈ F implies that
vertσ ⊂ Y , σ| vertσ = idvert σ and every subsimplex of σ is in F . The pair (Y,F) is
then called a simplicial space. We write vertF = {vertσ : σ ∈ F}. A simplicial space
(Y,F) is locally convex if for each p ∈ Y and its neighborhood V there exists a smaller
neighborhood U of p such that [U ]<ω ⊂ vertF and for every σ ∈ F , vertσ ⊂ U implies
imσ := σ[Σ(vertσ)] ⊂ V . A simplicial space (Y,F) is convex if every finite subset of
Y is in vertF . A theorem of Kulpa [5] says that every convex locally convex simplicial
space has the fixed point property for continuous self-maps with compact images. We
show that every compact metric space with such a property is an AR. This answers a
question posed by Kulpa in [5].

Theorem 2. Every compact metric space with a convex and locally convex simplicial
structure is an AR.

Proof. Fix an open cover U of a compact metric space Y with a convex, locally convex
simplicial structure F . Denote by R(U) a fixed refinement V of U with the following
property:

(∀ V ∈ V)(∃ U ∈ U)(∀ σ ∈ F) vertσ ⊂ V =⇒ imσ ⊂ U.

Now define a sequence of open covers Un such that Un+1 is a finite star-refinement of
R(Un) with mesh 6 2−n. Clearly, the sequence {Un}n∈ω satisfies conditions (a) and (b)
of Property (B∗). We check condition (c). Fix n ∈ ω and let m = n + 6. There exists
a Um+1-dense simplex σ ∈ F , since F is convex and Y is compact. Observe that σ is
(Uk+1,Uk)-compatible for each k ∈ ω. Indeed, if S ⊂ vertσ and S ≺ Uk+1 then S ≺ R(Uk)
so σ[Σ(S)] ≺ Uk. This shows that Y has Property (B∗). By Theorem 1, Y is an AR. �

4.2. Hyperspaces. For a topological space X we denote by CL(X) the hyperspace of
all nonempty closed subsets. We write TV for the Vietoris topology on CL(X). Let (X, d)
be a metric space. The Wijsman topology is the least topology TWd

on CL(X) such that
for each p ∈ X the function dist(p, · ) : CL(X) → R is continuous. Equivalently, TWd

is
the topology generated by all sets of the form:

U−(p, r) = {A ∈ CL(X) : dist(p,A) < r},
U+(p, r) = {A ∈ CL(X) : dist(p,A) > r},

where p ∈ X and r > 0. The Wijsman topology is weaker than the Vietoris one. Also,
(CL(X), TWd

) is metrizable (Polish) iff (X, d) is separable (Polish) (Beer-Costantini’s
theorem, see [3]). For a survey on hyperspace topologies we refer to Beer’s book [1].

Theorem 3. Let (X, d) be a Polish space with the following property:

(∗) if K is a finite family of closed balls in X then X \
⋃
K is path-wise connected.

Then (CL(X), TWd
) is an absolute retract.
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It is clear that to divide Rn we need at least n+1 compact convex sets. It follows that a
finite union of bounded closed convex sets in an infinite dimensional normed space does
not divide the space. Hence, applying Theorem 3, we get the following.

Corollary 1. Let (X, ‖ · ‖) be an infinite-dimensional separable Banach space. Then
(CL(X), TW‖·‖) is an absolute retract.

It has been proved by Sakai & Yang [8] that the Wijsman hyperspace of Rn is homeo-
morphic to the Hilbert cube minus a point (the authors of [8] consider hyperspaces with
the Fell topology which, in the case of locally compact metric spaces, is equivalent to the
Wijsman one). So the Wijsman hyperspace of every separable Banach space is an AR.

Proof of Theorem 3. Fix a Polish space (X, d) with property (∗). Denote by B the
collection of all sets of the form U−(p1, r1)∩· · ·∩U−(pk, rk)∩U+(q1, s1)∩· · ·∩U+(ql, sl),
where p1, . . . , pk, q1, . . . , ql ∈ X, r1, . . . , rk, s1, . . . , sl > 0. Clearly, B is an open base for
TWd

. The following two lemmas refer to the Wijsman topology on CL(X).

Lemma 3. For each W ∈ B the set [X]<ω ∩W is path-wise connected.

Proof. LetW = U−(p1, r1)∩· · ·∩U−(pk, rk)∩U+(q1, s1)∩· · ·∩U+(ql, sl), where pi, qi, ri, si

are as above, and denote G = X \ (B(q1, s1) ∪ · · · ∪ B(ql, sl)), where B(q, s) is the
closed ball centered at q ∈ X with radius s > 0. By (∗), G is path-wise connected. Fix
a, b ∈ [X]<ω ∩W . For each (x, y) ∈ a× b choose a path γx,y : [0, 1] → G with γx,y(0) = x
and γx,y(1) = y. Define Γ: [0, 1] → CL(X) by

Γ(t) =


⋃

(x,y)∈a×b

{x, γx,y(2t)}, t 6 1/2,⋃
(x,y)∈a×b

{γx,y(2− 2t), y}, t > 1/2.

Clearly, Γ(t) ∈ W for every t ∈ [0, 1] and Γ(0) = a and Γ(1) = b. A routine verifica-
tion shows that Γ is continuous (it is actually continuous with respect to the Vietoris
topology). �

Lemma 4. Let ϕ : bdσ → CL(X) be a continuous map from the boundary of a geometric
simplex σ. If the dimension of σ is at least 2 then there exists a continuous extension
ψ : σ → CL(X) of ϕ such that for each W ∈ B we have ψ[σ] ⊂ W whenever ϕ[bdσ] ⊂
W .

Proof. Take a Vietoris continuous map r : σ → CL(bdσ) which extends the natural
injection i : bdσ → CL(bdσ) (see [2, Lemma 3.3]). Define

ψ(s) = clX
⋃

ϕ[r(s)], s ∈ σ.

An easy verification shows that ψ is continuous. Clearly, ψ is an extension of ϕ. If
ϕ[bdσ] ⊂ U−(p, r) then also ψ[σ] ⊂ U−(p, r). If ϕ[bdσ] ⊂ U+(p, r) then for s ∈ σ
we have dist(p, ψ(s)) > r and, using the compactness of r(s) and the continuity of
dist(p, ϕ( · )), we get dist(p, ψ(s)) > r. Thus also ψ[σ] ⊂ U+(p, r). �
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Fix a complete metric % in (CL(X), TWd
). We will show that (CL(X), %) has Property

(B∗). Let {Un}n∈ω be a sequence of covers of CL(X) such that for each n ∈ ω, Un ⊂ B,
meshUn 6 2−n and Un+1 is a star-refinement of Un. We show that condition (c) of
Property (B∗) is fulfilled.

Fix n ∈ ω and set m = n + 6. As [X]<ω is dense in (CL(X), TWd
), we can find a set

S ⊂ [X]<ω which is Um+1-dense. Define

P1 =
⋃
{Σ(T ) : T ∈ [S]<ω & T ≺ Um}.

Denote by P
(1)
1 the 1-skeleton of P1, i.e. the union of all at most 1-dimensional simplices

of P1. By Lemma 3, the identity map id: S → S can be continuously extended to

ϕ1 : P
(1)
1 → CL(X), such that for each T ∈ [S]2 we have ϕ1[Σ(T )] ⊂ W for some

W ∈ Um, whenever T ≺ Um. Now by Lemma 4, ϕ1 can be extended to a continuous map
ϕ1 : P1 → CL(X), which is a (Um,Un+5)-compatible polytope. Next define

P2 =
⋃
{Σ(T ) : T ∈ [S]<ω & T ≺ Un+1}.

Then P1 is a subpolytope of P2. Again by Lemma 3, ϕ1 can be continuously extended

to ϕ2 : P1 ∪ P (1)
2 → CL(X) with the property analogous to ϕ1. Finally, as ϕ2[P

(0)
2 ] ⊂

[X]<ω and [X]<ω is path-wise connected, so again using Lemma 4, ϕ2 can be extended
to a continuous map ϕ2 : Σ(S) → CL(X) which is (Un+1,Un)-compatible. So ϕ2 is a
Um+1-dense convex polytope in (CL(X), TWd

) which is both (Um,Un+5)- and (Un+1,Un)-
compatible. This shows that (CL(X), TWd

) has Property (B∗). �
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