COMPLETE METRIC ABSOLUTE NEIGHBORHOOD RETRACTS

WIESŁAW KUBIŚ

ABSTRACT. We characterize complete metric absolute (neighborhood) retracts in terms of existence of certain maps of CW-polytopes. Using our result, we prove that a compact metric space with a convex and locally convex simplicial structure is an AR. This answers a question of Kulpa from [5]. As another application, we prove that the hyperspace of closed subsets of a separable Banach space endowed with the Wijsman topology is an absolute retract.

1. INTRODUCTION

A metrizable space X is an absolute (neighborhood) retract (briefly: AR (ANR)) if it is a retract of (an open subset of) a normed linear space containing X as a closed subset. There are several known characterizations of ANR's stated in terms of maps of CW-polytopes. Probably the most well-known is Dugundji-Lefschetz' theorem about realizations of polytopes. Another result in this spirit is due to Nhu [7].

We introduce a metric property (Property (B) below) which, roughly speaking, says that there is a sequence of maps of CW-polytopes with some 'compatibility' conditions, related to the metric. We prove (Section 2) that a complete metric space with this property is an ANR; a stronger version of Property (B) (called Property (B^{*})) implies that the space is an AR. It appears that Property (B) characterizes ANR's among complete metric spaces; we also give an example of a (non-complete) metric space with Property (B), which is not an ANR. Property (B) does not require the existence of extensions of any maps, which is required in Dugundji-Lefschetz' characterization. In Section 3 we show that the realization property of Dugundji-Lefschetz implies Property (B). This gives a proof of Dugundji-Lefschetz' theorem in the case of completely metrizable spaces.

The last section is devoted to applications. First we consider simplicial structures introduced by Kulpa [5] and we show that a compact metric space with a convex and locally convex simplicial structure is an AR. This solves Kulpa's problem from [5].

As a second application, we study hyperspaces of closed sets endowed with the Wijsman topology. This topology is important and useful in the analysis of set convergence and in optimization theory; for references see Beer's book [1]. We show that if a given metric space has the property that after removing finitely many closed balls, the remaining part is path-wise connected, then its Wijsman hyperspace has Property (B^{*}). Consequently, the Wijsman hyperspace of a separable Banach space is an absolute retract.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 54C55, 54E50, Secondary: 54C20, 54B20.

Key words and phrases. absolute (neighborhood) retract, complete metric space, polytope, the Wijsman topology.

1.1. Notation. We denote by $[X]^{<\omega}$ and $[X]^n$ the collection of all finite and *n*-element subsets of X respectively; ω denotes the set of all nonnegative integers. Given any set S we shall denote by $\Sigma(S)$ the union of all geometric simplices with vertices in S, endowed with the CW-topology. More precisely, $\Sigma(S)$ is the set of all formal convex combinations of the form $\sum_{s \in S} \lambda_s s$, where $\lambda_s = 0$ for all but finitely many $s \in S$; a subset $U \subset \Sigma(S)$ is open if its intersection with any simplex σ of $\Sigma(S)$ is open in σ (with respect to the standard topology on σ). When S is finite, $\Sigma(S)$ is called the *geometric* or *abstract simplex* with the set of vertices S. A *subsimplex* (or a *face*) of a simplex $\Sigma(S)$ is, by definition, a simplex $\Sigma(T)$, where $T \subset S$. The *boundary* of a simplex $\sigma = \Sigma(S)$ is bd $\sigma = \bigcup_{T \subset S, T \neq S} \Sigma(T)$.

An abstract polytope is a space of the form $P = \bigcup_{T \in \mathcal{A}} \Sigma(T)$, where \mathcal{A} is any family of sets, endowed with the CW-topology, i.e. P is a subspace of $\Sigma(S)$, where $S = \bigcup \mathcal{A}$. Sis the set of vertices of P and we write S = vert P. Observe that P can also be written as $\bigcup_{T \in \mathcal{A}_0} \Sigma(T)$, where $\mathcal{A}_0 = \{T : (\exists T' \in \mathcal{A}) \ T \in [T']^{<\omega}\}$. A subpolytope of an abstract polytope $P = \bigcup_{T \in \mathcal{A}} \Sigma(T)$ is a polytope $Q = \bigcup_{R \in \mathcal{B}} \Sigma(R)$ such that every simplex of Q (i.e. a face of $\Sigma(R)$ for some $R \in \mathcal{B}$) is also a simplex of P, i.e. for every $R \in \mathcal{B}$ there exists $T \in \mathcal{A}$ with $R \subset T$. A polytope P is convex if $P = \bigcup_{T \in [S] < \omega} \Sigma(T)$, where S = vert P. Clearly, this agrees with the definition of the convex hull of S, when we consider a polytope as a subset of a real linear space.

By a *polytope* in a topological space Y we mean a continuous map $\varphi \colon P \to Y$ of an abstract polytope P. We say that S = vert P is the *set of vertices* of φ and we write $S = \text{vert } \varphi$. Sometimes φ is called a *singular polytope* in Y or a *realization of* P in Y. We define the notion of subpolytope, convex polytope and simplex like in the abstract case.

2. Main result

Let \mathcal{U} be a collection of subsets of a topological space Y. We write $A \prec \mathcal{U}$ whenever A is a set contained in some element of \mathcal{U} . A polytope φ in Y is \mathcal{U} -dense if $U \cap \varphi[\operatorname{vert} \varphi] \neq \emptyset$ whenever $U \in \mathcal{U} \setminus \{\emptyset\}$. Let \mathcal{U}, \mathcal{V} be two open covers of Y. We say that a polytope φ is $(\mathcal{U}, \mathcal{V})$ -compatible if for every finite set $S \subset \operatorname{vert} \varphi$ we have $\Sigma(S) \subset \operatorname{dom} \varphi$ and $\varphi[\Sigma(S)] \prec \mathcal{V}$ whenever $\varphi[S] \prec \mathcal{U}$. By mesh \mathcal{U} we mean the supremum of diameters of members of \mathcal{U} .

We say that a metric space Y has Property (B) provided there exists a sequence of open covers $\{\mathcal{U}_n\}_{n\in\omega}$ satisfying the following conditions:

- (a) for each $n \in \omega$, \mathcal{U}_{n+1} is a star-refinement of \mathcal{U}_n ,
- (b) $\sum_{n\in\omega} \operatorname{mesh} \mathcal{U}_n < +\infty$,
- (c) for each $n \in \omega$ there is m > n + 5 and there exists a \mathcal{U}_{m+1} -dense polytope in Y, which is simultaneously $(\mathcal{U}_m, \mathcal{U}_{n+5})$ and $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ -compatible.

If additionally, for some $n \in \omega$ there is a convex polytope satisfying (c) then we say that Y has *Property* (B^{*}).

Theorem 1. Every complete metric space with Property (B) is an absolute neighborhood retract. A complete metric space with Property (B^*) is an absolute retract.

Proof. We start with two lemmas. We assume here that Y is a complete metric space with Property (B), A is a closed subset of a metrizable space X and $f: A \to Y$ is a fixed continuous map.

Lemma 1. Let n > 0 and suppose that $g: X \to Y$ is a continuous map such that g|A is \mathcal{U}_{n+3} -close to f. Then there exists a continuous map $g': X \to Y$ which is \mathcal{U}_{n-1} -close to g and \mathcal{U}_{n+4} -close to f on A.

Proof. Let m > n + 5 be as in condition (c) of Property (B). Set $\mathcal{U} = \mathcal{U}_{m+1}$. For $U \in \mathcal{U}$ define

$$U^* = f^{-1}[U] \cup (g^{-1}[\operatorname{star}(U, \mathcal{U}_{n+3})] \setminus A).$$

Observe that $\{U^*\}_{U \in \mathcal{U}}$ is an open cover of X. Let $\{h_U\}_{U \in \mathcal{U}}$ be a locally finite partition of unity such that $h_U^{-1}[(0,1]] \subset U^*$ for $U \in \mathcal{U}$. By condition (c) of Property (B), there exists a \mathcal{U} -dense polytope φ in Y which is simultaneously $(\mathcal{U}_m, \mathcal{U}_{n+5})$ - and $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ compatible. For each $U \in \mathcal{U} \setminus \{\emptyset\}$ choose $y_U \in \text{vert } \varphi$ such that $\varphi(y_U) \in U$.

Fix $t \in X$ and consider $\mathcal{U}_t = \{U \in \mathcal{U} : h_U(t) > 0\}$. Then $g(t) \in \operatorname{star}(U, \mathcal{U}_{n+3})$ for $U \in \mathcal{U}_t$. Let $S_t = \{y_U : U \in \mathcal{U}_t\}$. Then $\varphi[S_t] \subset \operatorname{star}(g(t), \mathcal{U}_{n+2}) \prec \mathcal{U}_{n+1}$ and hence $\Sigma(S_t) \subset \operatorname{dom} \varphi$. Define a map $g' : X \to Y$ by setting

$$g'(t) = \varphi \Big(\sum_{U \in \mathcal{U}} h_U(t) y_U \Big).$$

Clearly g' is continuous and \mathcal{U}_{n-1} -close to g since $\{g'(t)\} \cup \varphi[S_t] \prec \mathcal{U}_n$ and $\{g(t)\} \cup \varphi[S_t] \prec \mathcal{U}_{n+1}$.

Suppose now that $t \in A$. Then $f(t) \in \bigcap \mathcal{U}_t$ and consequently $\varphi[S_t] \cup \{f(t)\} \subset \operatorname{star}(f(t), \mathcal{U})$ $\prec \mathcal{U}_m$. Thus $\varphi[S_t] \cup \{g'(t)\} \in \varphi[\Sigma(S_t)] \prec \mathcal{U}_{n+5}$ which means that g'|A is \mathcal{U}_{n+4} -close to f.

Lemma 2. There exists an open set $W \supset A$ and a continuous map $g: W \to Y$ which is \mathcal{U}_4 -close to f on A. If Y has Property (B^*) then we may assume that W = X.

Proof. Applying condition (c) of Property (B) (for n = 0) we get m > 5 and a polytope φ which is \mathcal{U}_{m+1} -dense and $(\mathcal{U}_m, \mathcal{U}_5)$ -compatible. Set $\mathcal{U} = \mathcal{U}_{m+1}$. By paracompactness, there is a locally finite open cover $\{H_U\}_{U \in \mathcal{U}}$ of X such that $A \cap \operatorname{cl} H_U \subset f^{-1}[U]$ for every $U \in \mathcal{U}$. Set

$$V_U = H_U \setminus \bigcup \{ \operatorname{cl} H_G \colon G \in \mathcal{U} \& A \cap \operatorname{cl} H_G \cap H_U = \emptyset \}$$

Observe that each V_U is open in $X, A \subset \bigcup_{U \in \mathcal{U}} V_U$ and $V_{U_1} \cap V_{U_2} \neq \emptyset$ implies $U_1 \cap U_2 \neq \emptyset$. The last property follows from the fact that if $V_{U_1} \cap V_{U_2} \neq \emptyset$ then there is $t \in A \cap \operatorname{cl} H_{U_1} \cap H_{U_2}$ and consequently $f(t) \in U_1 \cap U_2$. Let $W = \bigcup_{U \in \mathcal{U}} V_U$ and let $\{h_U\}_{U \in \mathcal{U}}$ be a locally finite partition of unity in W such that $h_U^{-1}[(0,1]] \subset V_U$ for every $U \in \mathcal{U}$.

Now, for each $U \in \mathcal{U} \setminus \{\emptyset\}$ choose $y_U \in \operatorname{vert} \varphi$ so that $\varphi(y_U) \in U$. Define

(*)
$$g(t) = \varphi \Big(\sum_{U \in \mathcal{U}} h_U(t) y_U \Big), \quad t \in W.$$

Observe that g is well-defined, since if $\mathcal{U}_t = \{U \in \mathcal{U} : h_U(t) > 0\}$ then $\{\varphi(y_U) : U \in \mathcal{U}_t\} \subset$ star (U_0, \mathcal{U}) , where $U_0 \in \mathcal{U}_t$ is arbitrary (because $U_1 \cap U_2 \neq \emptyset$ whenever $U_1, U_2 \in \mathcal{U}_t$) and consequently $\Sigma(\{y_U : U \in \mathcal{U}_t\}) \subset \operatorname{dom} \varphi$. As in the proof of the previous Lemma, one can check that g|A is \mathcal{U}_4 -close to f.

Finally, if Y has Property (B^{*}) then we may assume that φ is a convex polytope, so formula (*) well defines a continuous map on the entire space X. Thus, in this case we can set W = X.

Theorem 1 follows immediately from Lemma 1 and Lemma 2. Indeed, using Lemma 2 we get a continuous map $g_0: W \to Y$ which is \mathcal{U}_4 -close to f, where $W \supset A$ is open. If Y has Property (B^{*}) then W = X. Now we can use inductively Lemma 1 to obtain a sequence of continuous maps $g_n: W \to Y$ such that g_{n+1} is \mathcal{U}_{n-1} -close to g_n and \mathcal{U}_{n+4} -close to f on A. By condition (b) of Property (B), the sequence $\{g_n\}_{n\in\omega}$ converges uniformly to a continuous map $f': W \to Y$ which is an extension of f (here we have used the completeness of Y).

We now show that every metric ANR/AR has Property $(B)/(B^*)$.

Proposition 1. Let Y be a metric ANR. Then there exists a polytope φ in Y with vert $\varphi = Y$ and there exists a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open covers of Y such that for each $n \in \omega$, mesh $\mathcal{U}_n \leq 2^{-n}$, \mathcal{U}_{n+1} is a star-refinement of \mathcal{U}_n and φ is $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ -compatible. If additionally, Y is an AR then φ is a convex polytope.

Proof. By the theorem of Arens-Eells we can assume that Y is a closed subset of a normed linear space E. Let $r: W \to Y$ be a retraction, where $W \supset Y$ is open in E. Define

$$P = \bigcup \{ \Sigma(S) \colon S \in [Y]^{<\omega} \& \operatorname{conv}_E S \subset W \} \subset \Sigma(Y).$$

Let $\psi: P \to E$ be the unique affine map with $\psi|Y = \mathrm{id}_Y$. Then $\varphi = r\psi$ is a polytope in Y with vert $\varphi = Y$. Let \mathcal{U}_0 be any open cover of Y with mesh ≤ 1 . Suppose that covers $\mathcal{U}_0, \ldots, \mathcal{U}_n$ are already defined so that mesh $\mathcal{U}_i < 2^{-(i+1)}$ and they satisfy conditions (a) and (b). By the continuity of r, there exists an open cover \mathcal{V} of W, consisting of convex sets and such that $\{r[V]: V \in \mathcal{V}\}$ is a refinement of \mathcal{U}_n . Now let \mathcal{U}_{n+1} be a star-refinement of \mathcal{U}_n with mesh $\leq 2^{-(n+1)}$, which is also a refinement of \mathcal{V} . Then φ is $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ -compatible. Finally, if Y is an AR then W = E and hence $P = \Sigma(Y)$.

Below we describe an example of a separable metric space with Property (B^*) , which is not an ANR. Thus, the completeness assumption in Theorem 1 is essential.

Example 1. Consider the Hilbert cube $Q = [0, 1]^{\omega}$ endowed with the product metric. There exists a sequence $\{A_n\}_{n \in \omega}$ of pairwise disjoint dense convex subsets of Q. Indeed, if $\{B_n\}_{n \in \omega}$ is a decomposition of ω into infinite sets then we can set

$$A_n = \{ x \in Q : \exists i \in B_n (x(i) > 0 \& (\forall j > i) x(j) = 0) \}.$$

Now, for each $n \in \omega$ choose finite $D_n \subset A_n$ which is 1/n-dense in Q and define $Y = \bigcup_{n \in \omega} \operatorname{conv} D_n$. Clearly, Y is dense in Q, so Q is the completion of Y.

Let $\{\mathcal{U}_n\}_{n\in\omega}$ be a sequence of finite open covers of Y such that mesh $\mathcal{U}_n \leq 2^{-n}$, \mathcal{U}_{n+1} is a star-refinement of \mathcal{U}_n and each element of \mathcal{U}_n is of the form $U \cap Y$, where $U \subset Q$ is convex. Let $\varphi_k \colon \Sigma(D_k) \to \operatorname{conv} D_k \subset Y$ be the unique affine map which extends id_{D_k} . Then φ_k is $(\mathcal{U}_n, \mathcal{U}_n)$ -compatible for each $n \in \omega$; moreover φ_k is \mathcal{U}_n -dense for a sufficiently large k. It follows that Y has Property (B^{*}). On the other hand, Y is not an ANR, since it is not locally path-wise connected at any point: as no continuum can be decomposed into countably many nonempty closed subsets, every path in Y is contained in conv D_n for some n, but these sets are pairwise disjoint and nowhere dense in Y.

3. A relation to Dugundji-Lefschetz' theorem

We recall the theorem of Lefschetz [6] and Dugundji [4] characterizing metric ANR's, stated in terms of realizations of polytopes. Let P be a CW-polytope and let Q be a subpolytope of P. A continuous map $\varphi: Q \to Y$ is a partial realization of P relative to a cover \mathcal{U} , provided Q contains all the vertices of P and for each simplex σ of P, $\varphi[Q \cap \sigma] \prec \mathcal{U}$. If Q = P then φ is a full realization relative to \mathcal{U} . Dugundji-Lefschetz' theorem says that a metrizable space Y is an ANR if and only if every open cover \mathcal{U} of Y has an open refinement $S(\mathcal{U})$ such that for every CW-polytope P, every partial realization of P relative to $S(\mathcal{U})$ can be extended to a full realization of P relative to \mathcal{U} .

We show that every metric space with the realization property stated above, has Property (B). This provides a proof of the "if" part of Dugundji-Lefschetz' theorem, in the case of completely metrizable spaces.

Fix a metric space Y with the above realization property. Let \mathcal{U}_0 be any open cover of Y with finite mesh and, inductively, let \mathcal{U}_{n+1} be an open star-refinement of $S(\mathcal{U}_n)$ with mesh $\leq 2^{-n}$. Clearly, the sequence $\{\mathcal{U}_n\}_{n\in\omega}$ satisfies conditions (a), (b) of Property (B). We check (c). Fix $n \in \omega$ and set m = n+6. Choose any \mathcal{U}_{m+1} -dense set $S \subset Y$. Consider

$$P_1 = \bigcup \{ \Sigma(T) \colon T \in [S]^{<\omega} \& T \prec \mathcal{U}_m \}.$$

Clearly, P_1 is a CW-polytope, S is a subpolytope of P_1 and the identity map $\mathrm{id}_S \colon S \to Y$ is a partial realization of P_1 relative to \mathcal{U}_m . As \mathcal{U}_m is a refinement of $S(\mathcal{U}_{n+5})$, there exists a full realization $\varphi_1 \colon P_1 \to Y$ of P_1 relative to \mathcal{U}_{n+5} with $\varphi_1 | S = \mathrm{id}_S$. Observe that φ_1 is $(\mathcal{U}_m, \mathcal{U}_{n+5})$ -compatible. Define

$$P_2 = \bigcup \{ \Sigma(T) \colon T \in [S]^{<\omega} \& \varphi_1[\Sigma(T) \cap P_1] \prec S(\mathcal{U}_n) \}.$$

Then P_1 is a subpolytope of P_2 and φ_1 is a partial realization of P_2 relative to $S(\mathcal{U}_n)$. Let $\varphi_2 \colon P_2 \to Y$ be a full realization of P_2 relative to \mathcal{U}_n which extends φ_1 . Clearly, φ_2 is $(\mathcal{U}_m, \mathcal{U}_{n+5})$ -compatible. Fix $T \in [S]^{<\omega}$ and $U \in \mathcal{U}_{n+1}$ with $T \subset U$. Set $Q = \Sigma(T) \cap P_1$. For each face σ of $\Sigma(T)$ with $\sigma \subset Q$ there is $W_{\sigma} \in \mathcal{U}_{n+5}$ with $\varphi_1[\sigma] \subset W_{\sigma}$. We have

$$\varphi_1[Q] \subset U \cup \bigcup \{ W_{\sigma} \colon \sigma \text{ is a face of } \Sigma(T) \text{ with } \sigma \subset Q \} \subset \operatorname{star}(U, \mathcal{U}_{n+5}),$$

thus $\varphi_1[Q] \prec S(\mathcal{U}_n)$. Hence $\Sigma(T)$ is a simplex in P_2 and $\varphi_2[\Sigma(T)] \prec \mathcal{U}_n$. It follows that φ_2 is $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ -compatible. This shows that condition (c) of Property (B) is satisfied.

4. Applications

4.1. Simplicial structures. Following Kulpa [5] we say that a collection \mathcal{F} consisting of simplices in a space Y is a simplicial structure in Y provided $\sigma \in \mathcal{F}$ implies that vert $\sigma \subset Y$, $\sigma | \text{vert } \sigma = \text{id}_{\text{vert } \sigma}$ and every subsimplex of σ is in \mathcal{F} . The pair (Y, \mathcal{F}) is then called a simplicial space. We write vert $\mathcal{F} = \{\text{vert } \sigma : \sigma \in \mathcal{F}\}$. A simplicial space (Y, \mathcal{F}) is locally convex if for each $p \in Y$ and its neighborhood V there exists a smaller neighborhood U of p such that $[U]^{<\omega} \subset \text{vert } \mathcal{F}$ and for every $\sigma \in \mathcal{F}$, $\text{vert } \sigma \subset U$ implies im $\sigma := \sigma[\Sigma(\text{vert } \sigma)] \subset V$. A simplicial space (Y, \mathcal{F}) is convex if every finite subset of Y is in vert \mathcal{F} . A theorem of Kulpa [5] says that every convex locally convex simplicial space has the fixed point property for continuous self-maps with compact images. We show that every compact metric space with such a property is an AR. This answers a question posed by Kulpa in [5].

Theorem 2. Every compact metric space with a convex and locally convex simplicial structure is an AR.

Proof. Fix an open cover \mathcal{U} of a compact metric space Y with a convex, locally convex simplicial structure \mathcal{F} . Denote by $R(\mathcal{U})$ a fixed refinement \mathcal{V} of \mathcal{U} with the following property:

 $(\forall V \in \mathcal{V}) (\exists U \in \mathcal{U}) (\forall \sigma \in \mathcal{F}) \operatorname{vert} \sigma \subset V \implies \operatorname{im} \sigma \subset U.$

Now define a sequence of open covers \mathcal{U}_n such that \mathcal{U}_{n+1} is a finite star-refinement of $R(\mathcal{U}_n)$ with mesh $\leq 2^{-n}$. Clearly, the sequence $\{\mathcal{U}_n\}_{n\in\omega}$ satisfies conditions (a) and (b) of Property (B^{*}). We check condition (c). Fix $n \in \omega$ and let m = n + 6. There exists a \mathcal{U}_{m+1} -dense simplex $\sigma \in \mathcal{F}$, since \mathcal{F} is convex and Y is compact. Observe that σ is $(\mathcal{U}_{k+1}, \mathcal{U}_k)$ -compatible for each $k \in \omega$. Indeed, if $S \subset \text{vert } \sigma$ and $S \prec \mathcal{U}_{k+1}$ then $S \prec R(\mathcal{U}_k)$ so $\sigma[\Sigma(S)] \prec \mathcal{U}_k$. This shows that Y has Property (B^{*}). By Theorem 1, Y is an AR. \Box

4.2. Hyperspaces. For a topological space X we denote by CL(X) the hyperspace of all nonempty closed subsets. We write \mathcal{T}_V for the Vietoris topology on CL(X). Let (X, d) be a metric space. The Wijsman topology is the least topology \mathcal{T}_{W_d} on CL(X) such that for each $p \in X$ the function $\operatorname{dist}(p, \cdot) : CL(X) \to \mathbb{R}$ is continuous. Equivalently, \mathcal{T}_{W_d} is the topology generated by all sets of the form:

$$U^{-}(p,r) = \{A \in CL(X) : \operatorname{dist}(p,A) < r\},\$$
$$U^{+}(p,r) = \{A \in CL(X) : \operatorname{dist}(p,A) > r\},\$$

where $p \in X$ and r > 0. The Wijsman topology is weaker than the Vietoris one. Also, $(CL(X), \mathcal{T}_{W_d})$ is metrizable (Polish) iff (X, d) is separable (Polish) (Beer-Costantini's theorem, see [3]). For a survey on hyperspace topologies we refer to Beer's book [1].

Theorem 3. Let (X, d) be a Polish space with the following property:

(*) if \mathcal{K} is a finite family of closed balls in X then $X \setminus \bigcup \mathcal{K}$ is path-wise connected. Then $(CL(X), \mathcal{T}_{W_d})$ is an absolute retract. It is clear that to divide \mathbb{R}^n we need at least n+1 compact convex sets. It follows that a finite union of bounded closed convex sets in an infinite dimensional normed space does not divide the space. Hence, applying Theorem 3, we get the following.

Corollary 1. Let $(X, \|\cdot\|)$ be an infinite-dimensional separable Banach space. Then $(CL(X), \mathcal{T}_{W_{\|\cdot\|}})$ is an absolute retract.

It has been proved by Sakai & Yang [8] that the Wijsman hyperspace of \mathbb{R}^n is homeomorphic to the Hilbert cube minus a point (the authors of [8] consider hyperspaces with the *Fell topology* which, in the case of locally compact metric spaces, is equivalent to the Wijsman one). So the Wijsman hyperspace of every separable Banach space is an AR.

Proof of Theorem 3. Fix a Polish space (X, d) with property (*). Denote by \mathcal{B} the collection of all sets of the form $U^{-}(p_1, r_1) \cap \cdots \cap U^{-}(p_k, r_k) \cap U^{+}(q_1, s_1) \cap \cdots \cap U^{+}(q_l, s_l)$, where $p_1, \ldots, p_k, q_1, \ldots, q_l \in X, r_1, \ldots, r_k, s_1, \ldots, s_l > 0$. Clearly, \mathcal{B} is an open base for \mathcal{T}_{W_d} . The following two lemmas refer to the Wijsman topology on CL(X).

Lemma 3. For each $W \in \mathcal{B}$ the set $[X]^{<\omega} \cap W$ is path-wise connected.

Proof. Let $W = U^{-}(p_1, r_1) \cap \cdots \cap U^{-}(p_k, r_k) \cap U^{+}(q_1, s_1) \cap \cdots \cap U^{+}(q_l, s_l)$, where p_i, q_i, r_i, s_i are as above, and denote $G = X \setminus (\overline{B}(q_1, s_1) \cup \cdots \cup \overline{B}(q_l, s_l))$, where $\overline{B}(q, s)$ is the closed ball centered at $q \in X$ with radius s > 0. By (*), G is path-wise connected. Fix $a, b \in [X]^{<\omega} \cap W$. For each $(x, y) \in a \times b$ choose a path $\gamma_{x,y}: [0, 1] \to G$ with $\gamma_{x,y}(0) = x$ and $\gamma_{x,y}(1) = y$. Define $\Gamma: [0, 1] \to CL(X)$ by

$$\Gamma(t) = \begin{cases} \bigcup_{\substack{(x,y) \in a \times b}} \{x, \gamma_{x,y}(2t)\}, & t \leq 1/2, \\ \bigcup_{\substack{(x,y) \in a \times b}} \{\gamma_{x,y}(2-2t), y\}, & t \geq 1/2. \end{cases}$$

Clearly, $\Gamma(t) \in W$ for every $t \in [0, 1]$ and $\Gamma(0) = a$ and $\Gamma(1) = b$. A routine verification shows that Γ is continuous (it is actually continuous with respect to the Vietoris topology).

Lemma 4. Let φ : $\operatorname{bd} \sigma \to CL(X)$ be a continuous map from the boundary of a geometric simplex σ . If the dimension of σ is at least 2 then there exists a continuous extension $\psi: \sigma \to CL(X)$ of φ such that for each $W \in \mathcal{B}$ we have $\psi[\sigma] \subset W$ whenever $\varphi[\operatorname{bd} \sigma] \subset W$.

Proof. Take a Vietoris continuous map $r: \sigma \to CL(\mathrm{bd}\,\sigma)$ which extends the natural injection $i: \mathrm{bd}\,\sigma \to CL(\mathrm{bd}\,\sigma)$ (see [2, Lemma 3.3]). Define

$$\psi(s) = \operatorname{cl}_X \bigcup \varphi[r(s)], \qquad s \in \sigma.$$

An easy verification shows that ψ is continuous. Clearly, ψ is an extension of φ . If $\varphi[\operatorname{bd} \sigma] \subset U^{-}(p,r)$ then also $\psi[\sigma] \subset U^{-}(p,r)$. If $\varphi[\operatorname{bd} \sigma] \subset U^{+}(p,r)$ then for $s \in \sigma$ we have dist $(p, \psi(s)) \geq r$ and, using the compactness of r(s) and the continuity of dist $(p, \varphi(\cdot))$, we get dist $(p, \psi(s)) > r$. Thus also $\psi[\sigma] \subset U^{+}(p,r)$. \Box

Fix a complete metric ρ in $(CL(X), \mathcal{T}_{W_d})$. We will show that $(CL(X), \rho)$ has Property (B^{*}). Let $\{\mathcal{U}_n\}_{n\in\omega}$ be a sequence of covers of CL(X) such that for each $n \in \omega, \mathcal{U}_n \subset \mathcal{B}$, mesh $\mathcal{U}_n \leq 2^{-n}$ and \mathcal{U}_{n+1} is a star-refinement of \mathcal{U}_n . We show that condition (c) of Property (B^{*}) is fulfilled.

Fix $n \in \omega$ and set m = n + 6. As $[X]^{<\omega}$ is dense in $(CL(X), \mathcal{T}_{W_d})$, we can find a set $S \subset [X]^{<\omega}$ which is \mathcal{U}_{m+1} -dense. Define

$$P_1 = \bigcup \{ \Sigma(T) \colon T \in [S]^{<\omega} \& T \prec \mathcal{U}_m \}.$$

Denote by $P_1^{(1)}$ the 1-skeleton of P_1 , i.e. the union of all at most 1-dimensional simplices of P_1 . By Lemma 3, the identity map id: $S \to S$ can be continuously extended to $\varphi^1 \colon P_1^{(1)} \to CL(X)$, such that for each $T \in [S]^2$ we have $\varphi^1[\Sigma(T)] \subset W$ for some $W \in \mathcal{U}_m$, whenever $T \prec \mathcal{U}_m$. Now by Lemma 4, φ^1 can be extended to a continuous map $\varphi_1 \colon P_1 \to CL(X)$, which is a $(\mathcal{U}_m, \mathcal{U}_{n+5})$ -compatible polytope. Next define

$$P_2 = \bigcup \{ \Sigma(T) \colon T \in [S]^{<\omega} \& T \prec \mathcal{U}_{n+1} \}.$$

Then P_1 is a subpolytope of P_2 . Again by Lemma 3, φ_1 can be continuously extended to $\varphi^2 \colon P_1 \cup P_2^{(1)} \to CL(X)$ with the property analogous to φ^1 . Finally, as $\varphi^2[P_2^{(0)}] \subset [X]^{<\omega}$ and $[X]^{<\omega}$ is path-wise connected, so again using Lemma 4, φ^2 can be extended to a continuous map $\varphi_2 \colon \Sigma(S) \to CL(X)$ which is $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ -compatible. So φ_2 is a \mathcal{U}_{m+1} -dense convex polytope in $(CL(X), \mathcal{T}_{W_d})$ which is both $(\mathcal{U}_m, \mathcal{U}_{n+5})$ - and $(\mathcal{U}_{n+1}, \mathcal{U}_n)$ compatible. This shows that $(CL(X), \mathcal{T}_{W_d})$ has Property (B^{*}).

Acknowledgements. The author would like to thank the referee for many valuable remarks and comments.

References

- [1] G. BEER, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers 1993.
- [2] D. CURTIS, NGUYEN TO NHU, Hyperspaces of finite subsets which are homeomorphic to ℵ₀dimensional linear metric spaces, Topology Appl. 19 (1985) 251–260.
- [3] C. COSTANTINI, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc. 123 (1995) 2569-2574.
- [4] J. DUGUNDJI, Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Comp. Math. 13 (1958) 229-246.
- [5] W. KULPA, Convexity and the Brouwer fixed point theorem, Top. Proc. 22 (1997), Summer, 211-235.
- [6] S. LEFSCHETZ, On compact spaces, Ann. Math. 32 (1931) 521-538.
- [7] N.T. NHU, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984) 243-254.
- [8] K. SAKAI, Z. YANG, Hyperspaces of non-compact metric spaces which are homeomorphic to the Hilbert cube, Topology Appl. 127 (2003) 331–342.

UNIVERSITY OF SILESIA, UL. BANKOWA 14, 40-007 KATOWICE, POLAND *E-mail address*: kubis@ux2.math.us.edu.pl *Current address*: Ben Gurion University of the Negev, Beer-Sheva, Israel *E-mail address*: kubis@math.bgu.ac.il