Logics with directed unification

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Unification and propositional logics

Equational unification

Θ : a background equational theory (or a variety of algebras)
Basic Θ-unification problem:
Given a set of equations $\Gamma=\left\{t_{1} \approx s_{1}, \ldots, t_{n} \approx s_{n}\right\}$, is there a substitution σ (a Θ-unifier of Γ) s.t.

$$
\sigma\left(t_{1}\right)==_{\Theta} \sigma\left(s_{1}\right), \ldots, \sigma\left(t_{n}\right)=_{\Theta} \sigma\left(s_{n}\right) ?
$$

What is the structure of Θ-unifiers?

Preorder of unifiers

Substitutions σ, τ are equivalent, written $\sigma={ }_{\Theta} \tau$, if $\sigma(x)={ }_{\Theta} \tau(x)$ for every x
σ is more general than τ, written $\tau \leq_{\Theta} \sigma$, if $v \circ \sigma={ }_{\Theta} \tau$ for some v
\leq_{Θ} is a preorder on the set $U_{\Theta}(\Gamma)$ of unifiers of Γ
Complete set of unifiers: a cofinal subset $C \subseteq U_{\Theta}(\Gamma)$ (every $\tau \in U_{\Theta}(\Gamma)$ is less general than some $\sigma \in C$)
Minimal c. s. of u.: no proper subset of C is complete
Equivalently: C consists of pairwise incomparable maximal unifiers

Classification of unification problems

If Γ has a minimal complete set of unifiers C, it is of

- type 1 (unitary) if $|C|=1$ (most general unifier (mgu))
- type ω (finitary) if C is finite, $|C|>1$
- type ∞ (infinitary) if C is infinite

Otherwise (= the set of all maximal unifiers is not cofinal):

- type 0 (nullary)

Unification type of Θ is the maximal (=worst) type among unifiable Θ-unification problems Γ, where

$$
1<\omega<\infty<0
$$

Propositional logics

Propositional logic L :
Language: formulas built from atoms (variables) $\left\{x_{n}: n \in \omega\right\}$ using a fixed set of connectives of finite arity

Consequence relation: a relation $\Gamma \vdash_{L} \varphi$ between sets of formulas and formulas such that

- $\varphi \vdash_{L} \varphi$
- $\Gamma \vdash_{L} \varphi$ implies $\Gamma, \Delta \vdash_{L} \varphi$
- $\Gamma, \Delta \vdash_{L} \varphi$ and $\forall \psi \in \Delta \Gamma \vdash_{L} \psi$ imply $\Gamma \vdash_{L} \varphi$
- $\Gamma \vdash_{L} \varphi$ implies $\sigma(\Gamma) \vdash_{L} \sigma(\varphi)$ for every substitution σ

Algebraizable logics

A logic L is finitely algebraizable wrt a class K of algebras if there is a finite set $E(x, y)$ of formulas and a finite set $T(x)$ of equations such that

- $\Gamma \vdash_{L} \varphi \Leftrightarrow T(\Gamma) \vDash_{K} T(\varphi)$
- $\Delta \vDash_{K} t \approx s \Leftrightarrow E(\Delta) \vdash_{L} E(t, s)$
- $x \vdash_{L} E(T(x))$
- $x \approx y \|_{K} T(E(x, y))$

Example (modal logic, ...):
$T(x)=\{x \approx 1\}, E(x, y)=\{x \leftrightarrow y\}$

Unification in propositional logics

If L is a logic algebraizable wrt a (quasi)variety K, we can express K-unification in terms of L :
An L-unifier of a formula φ is σ such that $\vdash_{L} \sigma(\varphi)$
Then we have:

- L-unifier of $\varphi=K$-unifier of $T(\varphi)$
- K-unifier of $t \approx s=L$-unifier of $E(t, s)$
- $\sigma=_{L} \tau$ iff $\vdash_{L} E(\sigma(x), \tau(x))$ for every x
\Rightarrow express accordingly $\leq_{L}, U_{L}(\Gamma)$, unification types, \ldots

Equivalential logics

More generally, unification theory makes sense for equivalential logics L :
Set of formulas $E(x, y)$ s.t.

- $\vdash_{L} E(x, x)$
- $E(x, y), \varphi(x) \vdash_{L} \varphi(y)$ for each φ (may have other variables)

Then define:

- L-unifier of Γ is σ s.t. $\vdash_{L} \sigma(\Gamma)$
- $\sigma={ }_{L} \tau$ iff $\vdash_{L} E(\sigma(x), \tau(x))$ for each x
- this induces $\left\langle U_{L}(\Gamma), \leq_{L}\right\rangle$ as before

Unification with parameters

Elementary unification vs. unification with free constants:
Distinguish two kinds of atoms:

- variables $\left\{x_{n}: n \in \omega\right\}$
- constants (parameters) $\left\{p_{n}: n \in \omega\right\}$

Substitutions only modify variables, we require $\sigma\left(p_{n}\right)=p_{n}$
Adapt accordingly the other notions:

- L-unifier
- $=_{L}, \leq_{L}, \ldots$

Directed unification

Directed unification

Common situation (modal logics, ...):

- we prove unification is at most finitary
- we wish to distinguish type 1 from type ω

Directed (aka filtering) unification:
$\left\langle U_{L}(\Gamma), \leq_{L}\right\rangle$ is a directed preorder for each Γ

$$
\forall \sigma_{0}, \sigma_{1} \in U_{L}(\Gamma) \exists \sigma \in U_{L}(\Gamma)\left(\sigma_{0} \leq_{L} \sigma \& \sigma_{1} \leq_{L} \sigma\right)
$$

Directedness and unification type

Observe:

- Γ has $\mathrm{mgu} \Rightarrow U_{L}(\Gamma)$ is directed
- Γ has ≥ 2 maximal unifiers $\Rightarrow U_{L}(\Gamma)$ is not directed

Corollary: If L does not have type 0 , then

- directed unification \Rightarrow type 1
- nondirected unification \Rightarrow type ω or ∞

Transitive modal logics

Theorem [Ghilardi \& Sacchetti '04]:
A normal modal logic $L \supseteq \mathbf{K} 4$ has directed unification iff L extends

$$
\mathbf{K} 4.2:=\mathbf{K} 4+\diamond \boxminus \varphi \rightarrow \odot \diamond \varphi
$$

(We write $\square \varphi=\varphi \wedge \square \varphi, \diamond \varphi=\neg \boxtimes \neg \varphi=\varphi \vee \diamond \varphi$.)

- sophisticated argument involving algebra, category theory, and topological frames
- specific to transitive modal logics
- given only for elementary unification (no free constants)

It turns out this has a simple syntactic proof (next slide ...)

Elementary proof

\Rightarrow Let σ be a unifier of $\boxtimes x \vee \boxtimes \neg x$ more general than x / \top, x / \perp. Put $\alpha=\sigma(x)$, fix σ_{i} s.t. $\vdash_{L} \sigma_{1}(\alpha), \neg \sigma_{0}(\alpha)$. Define

$$
\tau\left(x_{j}\right)=\left(y \wedge \sigma_{1}\left(x_{j}\right)\right) \vee\left(\neg y \wedge \sigma_{0}\left(x_{j}\right)\right)
$$

for each variable x_{j} in α. We have

$$
\begin{aligned}
& \vdash_{L} \boxminus y \rightarrow \bigwedge_{j} \backsim\left(\tau\left(x_{j}\right) \leftrightarrow \sigma_{1}\left(x_{j}\right)\right) \rightarrow \tau(\alpha) \\
& \vdash_{L} \boxminus \neg \tau(\alpha) \rightarrow \square \neg \backsim y
\end{aligned}
$$

and similarly, $\vdash_{L} \square \tau(\alpha) \rightarrow \square \neg \square \neg y$. Since $\vdash_{L} \boxtimes \alpha \vee \square \neg \alpha$, we obtain $\vdash_{L} \odot \diamond \neg y \vee \square \odot y$.

Elementary proof (cont'd)

\Leftarrow Let σ_{0}, σ_{1} be unifiers of φ. Define

$$
\sigma\left(x_{j}\right)=\left(\square \odot y \wedge \sigma_{0}\left(x_{j}\right)\right) \vee\left(\neg \odot \odot y \wedge \sigma_{1}\left(x_{j}\right)\right) .
$$

Clearly, $\sigma_{0} \leq_{L} \sigma$ via y / \top, and $\sigma_{1} \leq_{L} \sigma$ via y / \perp. Also,

$$
\begin{gathered}
\vdash_{L} \boxminus \diamond y \rightarrow \bigwedge_{j} \backsim\left(\sigma\left(x_{j}\right) \leftrightarrow \sigma_{0}\left(x_{j}\right)\right) \rightarrow \sigma(\varphi) \\
\vdash_{L} \boxminus \neg \backsim \diamond y \rightarrow \bigwedge_{j} \backsim\left(\sigma\left(x_{j}\right) \leftrightarrow \sigma_{1}\left(x_{j}\right)\right) \rightarrow \sigma(\varphi)
\end{gathered}
$$

Since $\vdash_{\text {K4.2 }} \odot \diamond y \vee \square \neg \backsim \ominus y$, we obtain $\vdash_{L} \sigma(\varphi)$.

Comments

- L has directed unification \Leftrightarrow there is a unifier of $\square x \vee \square \neg x$ more general than $x / \top, x / \perp$ (IOW, $\exists \alpha$ s.t. $\vdash_{L} \boxtimes \alpha \vee \boxminus \neg \alpha$, and α and $\neg \alpha$ are unifiable)
- L has directed elementary unification $\Leftrightarrow L$ has directed unification with constants
- The proof applies to larger classes of logics:

Example: Let L be an n-transitive multimodal logic ($\square \varphi:=\square_{1} \varphi \wedge \cdots \wedge \square_{k} \varphi$ satisfies $\vdash_{L} \square^{\leq n} \varphi \rightarrow \square^{n+1} \varphi$). TFAE:
(1) L has directed unification
(2) $\exists \alpha$ s.t. $\vdash_{L} \square \leq n \alpha \vee \square \leq n \neg \alpha$, and α and $\neg \alpha$ are unifiable
(3) $\vdash_{L} \diamond \leq n \square \leq n x \rightarrow \square \leq n \diamond \leq n x$

Generalization

By disentangling the roles of various subformulas used in the proof, we can make it work for logics L satisfying a handful of more abstract properties.

Assumption 0: L is equivalential wrt a set $E(x, y)$ of formulas
Example: $E(x, y)=x \leftrightarrow y$
Assumption 1: There is a finite set $D(x, y)$ of formulas that behaves as a deductive disjunction:

$$
\Gamma, D(\varphi, \psi) \vdash_{L} \chi \Leftrightarrow\left\{\begin{array}{l}
\Gamma, \varphi \vdash_{L} \chi \\
\Gamma, \psi \vdash_{L} \chi
\end{array}\right.
$$

Example: $D(x, y)=\square^{\leq n} x \vee \square \leq n y$

Switch and box formulas

Assumption 2: There are unifiable formulas $C_{0}(x)$ and $C_{1}(x)$, and a switch formula $S\left(x, y_{0}, y_{1}\right)$:

$$
C_{e}(x) \vdash_{L} E\left(S\left(x, y_{0}, y_{1}\right), y_{e}\right)
$$

(Actually, the unifiability of C_{0}, C_{1} follows from assumption 3)
Example $C_{1}(x)=x, C_{0}(x)=\neg x, S\left(x, y_{0}, y_{1}\right)=\left(x \wedge y_{1}\right) \vee\left(\neg x \wedge y_{0}\right)$ Assumption 3: There is a formula $B(x)$ such that

$$
\begin{aligned}
\Gamma \vdash_{L} \varphi & \Rightarrow \Gamma \vdash_{L} C_{1}(B(\varphi)) \\
\Gamma, \varphi \vdash_{L} \perp & \Rightarrow \Gamma \vdash_{L} C_{0}(B(\varphi))
\end{aligned}
$$

Here: $\Delta \vdash_{L} \perp$ shorthand for $\forall \psi \Delta \vdash_{L} \psi$ (i.e., Δ is inconsistent)
Example: $B(x)=\square{ }^{\leq n} x$

General characterization

Theorem [J.]:
For a logic L satisfying assumptions $0,1,2,3$ above, TFAE:
(1) L has directed unification
(2) $\exists \alpha$ s.t. $\vdash_{L} D\left(C_{0}(\alpha), C_{1}(\alpha)\right)$, and $C_{0}(\alpha), C_{1}(\alpha)$ are unifiable
(3) $\vdash_{L} D\left(C_{0}\left(B\left(C_{0}(x)\right)\right), C_{0}\left(B\left(C_{1}(x)\right)\right)\right)$

Comments:

- Assumptions $0,1,2$ suffice for (1) \Leftrightarrow (2)
- Also applies to unification with constants
- If E, D, S, C_{0}, C_{1} without free constants:
L has directed elementary unification \Leftrightarrow L has directed unification with constants

Less abstract statement

Corollary:
Let $L \supseteq \mathrm{FL}_{\mathbf{o}} \upharpoonright\{\rightarrow, \wedge, \vee, 0,1\}$ (possibly with larger language) be equivalential wrt $E(x, y)=(x \rightarrow y) \wedge(y \rightarrow x)$, and have the deduction-detachment theorem in the form

$$
\Gamma, \varphi \vdash_{L} \psi \quad \text { iff } \quad \Gamma \vdash_{L} \Delta \varphi \rightarrow \psi
$$

for some formula $\Delta(x)$. TFAE:
(1) L has directed unification
(2) $\exists \alpha$ s.t. $\vdash_{L} \Delta \alpha \vee \Delta \neg \alpha$, and $\alpha, \neg \alpha$ are unifiable
(3) $\vdash_{L} \Delta \neg \Delta x \vee \Delta \neg \Delta \neg x$

Proof: Take $D(x, y)=\Delta x \vee \Delta y, C_{1}(x)=x, C_{0}(x)=\neg x$,
$S\left(x, y_{0}, y_{1}\right)=\left(1 \wedge x \rightarrow y_{1}\right) \wedge\left(1 \wedge \neg x \rightarrow y_{0}\right), B(x)=\Delta x$

Applications

Examples:

- n-transitive multimodal logics: $\Delta x=\square^{\leq n} x$ (we've seen that already)
- n-contractive $\left(=\vdash_{L} x^{n} \rightarrow x^{n+1}\right)$ simple axiomatic extensions of $\mathrm{FL}_{\mathrm{ew}}$:
- take $\Delta x=x^{n}$
- L has directed unification $\Leftrightarrow \vdash_{L}\left(\neg x^{n}\right)^{n} \vee\left(\neg(\neg x)^{n}\right)^{n}$
- $n=1: L \supseteq$ IPC has directed unification $\Leftrightarrow L \supseteq \mathbf{K C}$

Thank you for attention!

References

F. Baader, S. Ghilardi, Unification in modal and description logics, Logic J. IGPL 19 (2011), 705-730.
F. Baader, W. Snyder, Unification theory, in: Handbook of Automated Reasoning, vol. I, Elsevier, 2001, 445-533.
S. Ghilardi, L. Sacchetti, Filtering unification and most general unifiers in modal logic, J. Symb. Logic 69 (2004), 879-906.
E. Jeřábek, Rules with parameters in modal logic I, in preparation.

