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Unification and propositional logics
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Equational unification

Θ: a background equational theory (or a variety of algebras)

Basic Θ-unification problem:
Given a set of equations Γ = {t1 ≈ s1, . . . , tn ≈ sn}, is there a
substitution σ (a Θ-unifier of Γ) s.t.

σ(t1) =Θ σ(s1), . . . , σ(tn) =Θ σ(sn)?

What is the structure of Θ-unifiers?
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Preorder of unifiers

Substitutions σ, τ are equivalent, written σ =Θ τ , if
σ(x) =Θ τ(x) for every x

σ is more general than τ , written τ ≤Θ σ, if υ ◦ σ =Θ τ for
some υ

≤Θ is a preorder on the set UΘ(Γ) of unifiers of Γ

Complete set of unifiers: a cofinal subset C ⊆ UΘ(Γ)

(every τ ∈ UΘ(Γ) is less general than some σ ∈ C)

Minimal c. s. of u.: no proper subset of C is complete

Equivalently: C consists of pairwise incomparable maximal
unifiers
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Classification of unification problems

If Γ has a minimal complete set of unifiers C, it is of

type 1 (unitary) if |C| = 1 (most general unifier (mgu))

type ω (finitary) if C is finite, |C| > 1

type ∞ (infinitary) if C is infinite

Otherwise (= the set of all maximal unifiers is not cofinal):

type 0 (nullary)

Unification type of Θ is the maximal (=worst) type among
unifiable Θ-unification problems Γ, where

1 < ω <∞ < 0
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Propositional logics

Propositional logic L:

Language: formulas built from atoms (variables) {xn : n ∈ ω}

using a fixed set of connectives of finite arity

Consequence relation: a relation Γ ⊢L ϕ between sets of
formulas and formulas such that

ϕ ⊢L ϕ

Γ ⊢L ϕ implies Γ,∆ ⊢L ϕ

Γ,∆ ⊢L ϕ and ∀ψ ∈ ∆ Γ ⊢L ψ imply Γ ⊢L ϕ

Γ ⊢L ϕ implies σ(Γ) ⊢L σ(ϕ) for every substitution σ
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Algebraizable logics

A logic L is finitely algebraizable wrt a class K of algebras if
there is a finite set E(x, y) of formulas and a finite set T (x) of
equations such that

Γ ⊢L ϕ⇔ T (Γ) �K T (ϕ)

∆ �K t ≈ s⇔ E(∆) ⊢L E(t, s)

x ⊣⊢L E(T (x))

x ≈ y ��K T (E(x, y))

Example (modal logic, . . . ):
T (x) = {x ≈ 1}, E(x, y) = {x↔ y}
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Unification in propositional logics

If L is a logic algebraizable wrt a (quasi)variety K, we can
express K-unification in terms of L:

An L-unifier of a formula ϕ is σ such that ⊢L σ(ϕ)

Then we have:

L-unifier of ϕ = K-unifier of T (ϕ)

K-unifier of t ≈ s = L-unifier of E(t, s)

σ =L τ iff ⊢L E(σ(x), τ(x)) for every x
⇒ express accordingly ≤L, UL(Γ), unification types, . . .

Emil Je řábek|Logics with directed unification |ALCOP 2013, Utrecht 6:19



Equivalential logics

More generally, unification theory makes sense for
equivalential logics L:

Set of formulas E(x, y) s.t.

⊢L E(x, x)

E(x, y), ϕ(x) ⊢L ϕ(y) for each ϕ (may have other variables)

Then define:

L-unifier of Γ is σ s.t. ⊢L σ(Γ)

σ =L τ iff ⊢L E(σ(x), τ(x)) for each x

this induces 〈UL(Γ),≤L〉 as before
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Unification with parameters

Elementary unification vs. unification with free constants:

Distinguish two kinds of atoms:

variables {xn : n ∈ ω}

constants (parameters) {pn : n ∈ ω}

Substitutions only modify variables, we require σ(pn) = pn

Adapt accordingly the other notions:

L-unifier

=L, ≤L, . . .
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Directed unification
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Directed unification

Common situation (modal logics, . . . ):

we prove unification is at most finitary

we wish to distinguish type 1 from type ω

Directed (aka filtering) unification:

〈UL(Γ),≤L〉 is a directed preorder for each Γ

∀σ0, σ1 ∈ UL(Γ) ∃σ ∈ UL(Γ) (σ0 ≤L σ & σ1 ≤L σ)
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Directedness and unification type

Observe:

Γ has mgu ⇒ UL(Γ) is directed

Γ has ≥ 2 maximal unifiers ⇒ UL(Γ) is not directed

Corollary: If L does not have type 0, then

directed unification ⇒ type 1

nondirected unification ⇒ type ω or ∞
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Transitive modal logics

Theorem [Ghilardi & Sacchetti ’04]:
A normal modal logic L ⊇ K4 has directed unification
iff L extends

K4.2 := K4 + ·3 ·2ϕ→ ·2 ·3ϕ

(We write ·2ϕ = ϕ ∧ 2ϕ, ·3ϕ = ¬ ·2¬ϕ = ϕ ∨ 3ϕ.)

sophisticated argument involving algebra, category
theory, and topological frames

specific to transitive modal logics

given only for elementary unification (no free constants)

It turns out this has a simple syntactic proof (next slide . . . )
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Elementary proof

⇒ Let σ be a unifier of ·2x ∨ ·2¬x more general than x/⊤,
x/⊥. Put α = σ(x), fix σi s.t. ⊢L σ1(α),¬σ0(α). Define

τ(xj) =
(

y ∧ σ1(xj)
)

∨
(

¬y ∧ σ0(xj)
)

for each variable xj in α. We have

⊢L ·2y →
∧

j

·2
(

τ(xj) ↔ σ1(xj)
)

→ τ(α)

⊢L ·2¬τ(α) → ·2¬ ·2y

and similarly, ⊢L ·2τ(α) → ·2¬ ·2¬y. Since ⊢L ·2α ∨ ·2¬α, we
obtain ⊢L ·2 ·3¬y ∨ ·2 ·3y.
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Elementary proof (cont’d)

⇐ Let σ0, σ1 be unifiers of ϕ. Define

σ(xj) =
(

·2 ·3y ∧ σ0(xj)
)

∨
(

¬ ·2 ·3y ∧ σ1(xj)
)

.

Clearly, σ0 ≤L σ via y/⊤, and σ1 ≤L σ via y/⊥. Also,

⊢L ·2 ·3y →
∧

j

·2
(

σ(xj) ↔ σ0(xj)
)

→ σ(ϕ)

⊢L ·2¬ ·2 ·3y →
∧

j

·2
(

σ(xj) ↔ σ1(xj)
)

→ σ(ϕ)

Since ⊢K4.2 ·2 ·3y ∨ ·2¬ ·2 ·3y, we obtain ⊢L σ(ϕ).
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Comments

L has directed unification ⇔

there is a unifier of ·2x ∨ ·2¬x more general than x/⊤, x/⊥
(IOW, ∃α s.t. ⊢L ·2α ∨ ·2¬α, and α and ¬α are unifiable)

L has directed elementary unification
⇔ L has directed unification with constants

The proof applies to larger classes of logics:

Example: Let L be an n-transitive multimodal logic
(2ϕ := 21ϕ ∧ · · · ∧ 2kϕ satisfies ⊢L 2

≤nϕ→ 2
n+1ϕ). TFAE:

(1) L has directed unification

(2) ∃α s.t. ⊢L 2
≤nα ∨ 2

≤n¬α, and α and ¬α are unifiable

(3) ⊢L 3
≤n

2
≤nx→ 2

≤n
3

≤nx
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Generalization

By disentangling the roles of various subformulas used in
the proof, we can make it work for logics L satisfying a
handful of more abstract properties.

Assumption 0: L is equivalential wrt a set E(x, y) of formulas

Example: E(x, y) = x↔ y

Assumption 1: There is a finite set D(x, y) of formulas that
behaves as a deductive disjunction:

Γ, D(ϕ,ψ) ⊢L χ ⇔

{

Γ, ϕ ⊢L χ

Γ, ψ ⊢L χ

Example: D(x, y) = 2
≤nx ∨ 2

≤ny
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Switch and box formulas

Assumption 2: There are unifiable formulas C0(x) and C1(x),
and a switch formula S(x, y0, y1):

Ce(x) ⊢L E(S(x, y0, y1), ye)

(Actually, the unifiability of C0, C1 follows from assumption 3)

Example C1(x) = x, C0(x) = ¬x, S(x, y0, y1) = (x∧ y1)∨ (¬x∧ y0)

Assumption 3: There is a formula B(x) such that

Γ ⊢L ϕ ⇒ Γ ⊢L C1(B(ϕ)) (i.e., x ⊢L C1(B(x)))

Γ, ϕ ⊢L ⊥ ⇒ Γ ⊢L C0(B(ϕ))

Here: ∆ ⊢L ⊥ shorthand for ∀ψ∆ ⊢L ψ (i.e., ∆ is inconsistent)

Example: B(x) = 2
≤nx
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General characterization

Theorem [J.]:
For a logic L satisfying assumptions 0, 1, 2, 3 above, TFAE:

(1) L has directed unification

(2) ∃α s.t. ⊢L D(C0(α), C1(α)), and C0(α), C1(α) are unifiable

(3) ⊢L D(C0(B(C0(x))), C0(B(C1(x))))

Comments:

Assumptions 0, 1, 2 suffice for (1) ⇔ (2)

Also applies to unification with constants

If E,D, S,C0, C1 without free constants:
L has directed elementary unification ⇔

L has directed unification with constants
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Less abstract statement

Corollary:
Let L ⊇ FLo ↾ {→,∧,∨, 0, 1} (possibly with larger language)
be equivalential wrt E(x, y) = (x→ y) ∧ (y → x), and have the
deduction-detachment theorem in the form

Γ, ϕ ⊢L ψ iff Γ ⊢L ∆ϕ→ ψ

for some formula ∆(x). TFAE:

(1) L has directed unification

(2) ∃α s.t. ⊢L ∆α ∨ ∆¬α, and α,¬α are unifiable

(3) ⊢L ∆¬∆x ∨ ∆¬∆¬x

Proof: Take D(x, y) = ∆x ∨ ∆y, C1(x) = x, C0(x) = ¬x,
S(x, y0, y1) = (1 ∧ x→ y1) ∧ (1 ∧ ¬x→ y0), B(x) = ∆x
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Applications

Examples:

n-transitive multimodal logics: ∆x = 2
≤nx

(we’ve seen that already)

n-contractive (= ⊢L x
n → xn+1) simple axiomatic

extensions of FLew:
take ∆x = xn

L has directed unification ⇔ ⊢L

(

¬xn
)n

∨
(

¬(¬x)n
)n

n = 1: L ⊇ IPC has directed unification ⇔ L ⊇ KC
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Thank you for attention!
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