Logics with directed unification

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

ALCOP 2013 Utrecht April 2013

Unification and propositional logics

 Θ : a background equational theory (or a variety of algebras) Basic Θ -unification problem: Given a set of equations $\Gamma = \{t_1 \approx s_1, \dots, t_n \approx s_n\}$, is there a substitution σ (a Θ -unifier of Γ) s.t.

$$\sigma(t_1) =_{\Theta} \sigma(s_1), \dots, \sigma(t_n) =_{\Theta} \sigma(s_n)?$$

What is the structure of Θ -unifiers?

Preorder of unifiers

Substitutions σ, τ are equivalent, written $\sigma =_{\Theta} \tau$, if $\sigma(x) =_{\Theta} \tau(x)$ for every x

 σ is more general than τ , written $\tau \leq_{\Theta} \sigma$, if $v \circ \sigma =_{\Theta} \tau$ for some v

 \leq_{Θ} is a preorder on the set $U_{\Theta}(\Gamma)$ of unifiers of Γ

Complete set of unifiers: a cofinal subset $C \subseteq U_{\Theta}(\Gamma)$ (every $\tau \in U_{\Theta}(\Gamma)$ is less general than some $\sigma \in C$) Minimal c. s. of u.: no proper subset of *C* is complete Equivalently: *C* consists of pairwise incomparable maximal unifiers

Classification of unification problems

If Γ has a minimal complete set of unifiers C, it is of

- type 1 (unitary) if |C| = 1 (most general unifier (mgu))
- type ω (finitary) if *C* is finite, |C| > 1
- type ∞ (infinitary) if C is infinite

Otherwise (= the set of all maximal unifiers is not cofinal):

type 0 (nullary)

Unification type of Θ is the maximal (=worst) type among unifiable Θ -unification problems Γ , where

 $1<\omega<\infty<0$

Propositional logic L:

Language: formulas built from atoms (variables) $\{x_n : n \in \omega\}$ using a fixed set of connectives of finite arity

Consequence relation: a relation $\Gamma \vdash_L \varphi$ between sets of formulas and formulas such that

- $\, \bullet \, \varphi \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ implies $\Gamma, \Delta \vdash_L \varphi$
- $\Gamma, \Delta \vdash_L \varphi$ and $\forall \psi \in \Delta \Gamma \vdash_L \psi$ imply $\Gamma \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ implies $\sigma(\Gamma) \vdash_L \sigma(\varphi)$ for every substitution σ

Algebraizable logics

A logic *L* is finitely algebraizable wrt a class *K* of algebras if there is a finite set E(x, y) of formulas and a finite set T(x) of equations such that

- $\Gamma \vdash_L \varphi \Leftrightarrow T(\Gamma) \vDash_K T(\varphi)$
- $\Delta \vDash_K t \approx s \Leftrightarrow E(\Delta) \vdash_L E(t,s)$
- $x \dashv \vdash_L E(T(x))$

Example (modal logic, . . .): $T(x) = \{x \approx 1\}, E(x, y) = \{x \leftrightarrow y\}$

Unification in propositional logics

- If *L* is a logic algebraizable wrt a (quasi)variety *K*, we can express *K*-unification in terms of *L*:
- An *L*-unifier of a formula φ is σ such that $\vdash_L \sigma(\varphi)$

Then we have:

- L-unifier of $\varphi = K$ -unifier of $T(\varphi)$
- K-unifier of $t \approx s = L$ -unifier of E(t, s)
- $\sigma =_L \tau$ iff $\vdash_L E(\sigma(x), \tau(x))$ for every x \Rightarrow express accordingly \leq_L , $U_L(\Gamma)$, unification types, ...

Equivalential logics

More generally, unification theory makes sense for equivalential logics *L*:

- Set of formulas E(x, y) s.t.
 - $\vdash_L E(x,x)$
 - $E(x,y), \varphi(x) \vdash_L \varphi(y)$ for each φ (may have other variables)

Then define:

- *L*-unifier of Γ is σ s.t. $\vdash_L \sigma(\Gamma)$
- $\sigma =_L \tau$ iff $\vdash_L E(\sigma(x), \tau(x))$ for each x
- this induces $\langle U_L(\Gamma), \leq_L \rangle$ as before

Unification with parameters

Elementary unification vs. unification with free constants: Distinguish two kinds of atoms:

- variables $\{x_n : n \in \omega\}$
- constants (parameters) $\{p_n : n \in \omega\}$

Substitutions only modify variables, we require $\sigma(p_n) = p_n$

Adapt accordingly the other notions:

- L-unifier
- $=_L, \leq_L, \ldots$

Directed unification

Directed unification

Common situation (modal logics, ...):

- we prove unification is at most finitary
- we wish to distinguish type 1 from type ω

Directed (aka filtering) unification:

 $\langle U_L(\Gamma), \leq_L \rangle$ is a directed preorder for each Γ

 $\forall \sigma_0, \sigma_1 \in U_L(\Gamma) \ \exists \sigma \in U_L(\Gamma) \ (\sigma_0 \leq_L \sigma \& \sigma_1 \leq_L \sigma)$

Directedness and unification type

Observe:

- Γ has mgu $\Rightarrow U_L(\Gamma)$ is directed
- Γ has ≥ 2 maximal unifiers $\Rightarrow U_L(\Gamma)$ is not directed

Corollary: If L does not have type 0, then

- directed unification \Rightarrow type 1
- nondirected unification \Rightarrow type ω or ∞

Theorem [Ghilardi & Sacchetti '04]: A normal modal logic $L \supseteq K4$ has directed unification iff L extends

 $\mathbf{K4.2} := \mathbf{K4} + \Diamond \boxdot \varphi \to \boxdot \Diamond \varphi$

(We write $\Box \varphi = \varphi \land \Box \varphi$, $\Diamond \varphi = \neg \Box \neg \varphi = \varphi \lor \Diamond \varphi$.)

- sophisticated argument involving algebra, category theory, and topological frames
- specific to transitive modal logics
- given only for elementary unification (no free constants)

It turns out this has a simple syntactic proof (next slide ...)

Elementary proof

⇒ Let σ be a unifier of $\boxdot x \lor \boxdot \neg x$ more general than x/\top , x/\bot . Put $\alpha = \sigma(x)$, fix σ_i s.t. $\vdash_L \sigma_1(\alpha), \neg \sigma_0(\alpha)$. Define

$$\tau(x_j) = (y \land \sigma_1(x_j)) \lor (\neg y \land \sigma_0(x_j))$$

for each variable x_j in α . We have

$$\vdash_L \boxdot y \to \bigwedge_j \boxdot \left(\tau(x_j) \leftrightarrow \sigma_1(x_j) \right) \to \tau(\alpha)$$
$$\vdash_L \boxdot \neg \tau(\alpha) \to \boxdot \neg \boxdot y$$

and similarly, $\vdash_L \boxdot \tau(\alpha) \rightarrow \boxdot \neg \boxdot \neg y$. Since $\vdash_L \boxdot \alpha \lor \boxdot \neg \alpha$, we obtain $\vdash_L \boxdot \diamondsuit \neg y \lor \boxdot \diamondsuit y$.

Elementary proof (cont'd)

 \leftarrow Let σ_0, σ_1 be unifiers of φ . Define $\sigma(x_i) = (\Box \otimes y \wedge \sigma_0(x_i)) \vee (\neg \Box \otimes y \wedge \sigma_1(x_i)).$ Clearly, $\sigma_0 \leq_L \sigma$ via y/\top , and $\sigma_1 \leq_L \sigma$ via y/\bot . Also, $\vdash_L \Box \diamondsuit y \to \bigwedge \Box \big(\sigma(x_j) \leftrightarrow \sigma_0(x_j) \big) \to \sigma(\varphi)$ $\vdash_L \boxdot \neg \boxdot \diamondsuit y \to \bigwedge_{\cdot} \boxdot \big(\sigma(x_j) \leftrightarrow \sigma_1(x_j) \big) \to \sigma(\varphi)$

Since $\vdash_{\mathbf{K4.2}} \Box \diamondsuit y \lor \Box \neg \Box \diamondsuit y$, we obtain $\vdash_L \sigma(\varphi)$.

Comments

- L has directed unification \Leftrightarrow there is a unifier of $\Box x \lor \Box \neg x$ more general than x/\top , x/\bot (IOW, $\exists \alpha$ s.t. $\vdash_L \Box \alpha \lor \Box \neg \alpha$, and α and $\neg \alpha$ are unifiable)
- *L* has directed elementary unification
 ⇔ *L* has directed unification with constants
- The proof applies to larger classes of logics:

Example: Let *L* be an *n*-transitive multimodal logic ($\Box \varphi := \Box_1 \varphi \land \cdots \land \Box_k \varphi$ satisfies $\vdash_L \Box^{\leq n} \varphi \to \Box^{n+1} \varphi$). TFAE:

- (1) *L* has directed unification
- (2) $\exists \alpha \text{ s.t.} \vdash_L \Box^{\leq n} \alpha \lor \Box^{\leq n} \neg \alpha$, and α and $\neg \alpha$ are unifiable

(3) $\vdash_L \diamondsuit^{\leq n} \square^{\leq n} x \to \square^{\leq n} \diamondsuit^{\leq n} x$

By disentangling the roles of various subformulas used in the proof, we can make it work for logics *L* satisfying a handful of more abstract properties.

Assumption 0: *L* is equivalential wrt a set E(x, y) of formulas Example: $E(x, y) = x \leftrightarrow y$

Assumption 1: There is a finite set D(x, y) of formulas that behaves as a deductive disjunction:

$$\Gamma, D(\varphi, \psi) \vdash_L \chi \iff \begin{cases} \Gamma, \varphi \vdash_L \chi \\ \Gamma, \psi \vdash_L \chi \end{cases}$$

Example: $D(x,y) = \Box^{\leq n} x \vee \Box^{\leq n} y$

Switch and box formulas

Assumption 2: There are unifiable formulas $C_0(x)$ and $C_1(x)$, and a switch formula $S(x, y_0, y_1)$:

 $C_e(x) \vdash_L E(S(x, y_0, y_1), y_e)$

(Actually, the unifiability of C_0, C_1 follows from assumption 3) Example $C_1(x) = x$, $C_0(x) = \neg x$, $S(x, y_0, y_1) = (x \land y_1) \lor (\neg x \land y_0)$ Assumption 3: There is a formula B(x) such that

 $\Gamma \vdash_L \varphi \implies \Gamma \vdash_L C_1(B(\varphi)) \quad (i.e., x \vdash_L C_1(B(x)))$ $\Gamma, \varphi \vdash_L \bot \implies \Gamma \vdash_L C_0(B(\varphi))$

Here: $\Delta \vdash_L \bot$ shorthand for $\forall \psi \Delta \vdash_L \psi$ (i.e., Δ is inconsistent) Example: $B(x) = \Box^{\leq n} x$

General characterization

Theorem [J.]: For a logic *L* satisfying assumptions 0, 1, 2, 3 above, TFAE:

- (1) L has directed unification
- (2) $\exists \alpha \text{ s.t.} \vdash_L D(C_0(\alpha), C_1(\alpha)), \text{ and } C_0(\alpha), C_1(\alpha) \text{ are unifiable}$
- (3) $\vdash_L D(C_0(B(C_0(x))), C_0(B(C_1(x))))$

Comments:

- Assumptions 0, 1, 2 suffice for $(1) \Leftrightarrow (2)$
- Also applies to unification with constants
- If E, D, S, C_0, C_1 without free constants: L has directed elementary unification \Leftrightarrow L has directed unification with constants

Corollary:

Let $L \supseteq \mathbf{FL}_{o} \upharpoonright \{\rightarrow, \land, \lor, 0, 1\}$ (possibly with larger language) be equivalential wrt $E(x, y) = (x \rightarrow y) \land (y \rightarrow x)$, and have the deduction-detachment theorem in the form

$$\Gamma, \varphi \vdash_L \psi \quad \text{iff} \quad \Gamma \vdash_L \Delta \varphi \to \psi$$

for some formula $\Delta(x)$. TFAE:

- (1) *L* has directed unification
- (2) $\exists \alpha \text{ s.t.} \vdash_L \Delta \alpha \lor \Delta \neg \alpha$, and $\alpha, \neg \alpha$ are unifiable

$$(3) \vdash_L \Delta \neg \Delta x \lor \Delta \neg \Delta \neg x$$

Proof: Take $D(x, y) = \Delta x \lor \Delta y$, $C_1(x) = x$, $C_0(x) = \neg x$, $S(x, y_0, y_1) = (1 \land x \to y_1) \land (1 \land \neg x \to y_0)$, $B(x) = \Delta x$ Emil Jeřábek Logics with directed unification ALCOP 2013, Utrecht

Applications

Examples:

- *n*-transitive multimodal logics: $\Delta x = \Box^{\leq n} x$ (we've seen that already)
- *n*-contractive (= $\vdash_L x^n \rightarrow x^{n+1}$) simple axiomatic extensions of **FL**_{ew}:
 - take $\Delta x = x^n$
 - L has directed unification $\Leftrightarrow \vdash_L (\neg x^n)^n \lor (\neg (\neg x)^n)^n$
 - n = 1: $L \supseteq IPC$ has directed unification $\Leftrightarrow L \supseteq KC$

Thank you for attention!

References

F. Baader, S. Ghilardi, *Unification in modal and description logics*, Logic J. IGPL 19 (2011), 705–730.

F. Baader, W. Snyder, *Unification theory*, in: Handbook of Automated Reasoning, vol. I, Elsevier, 2001, 445–533.

S. Ghilardi, L. Sacchetti, *Filtering unification and most general unifiers in modal logic*, J. Symb. Logic 69 (2004), 879–906.

E. Jeřábek, Rules with parameters in modal logic I, in preparation.