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Studijnı́ obor: logika
Vypracoval: Emil Jeřábek
Vedoucı́ diplomové práce: RNDr. Vı́tězslav Švejdar, CSc.

Katedra logiky Praha, 2001
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Introduction

The idea of provability logic arose in the seventies in work of G. Boolos, R. Solovay,
and others, as an attempt to explore certain “modal effects” in the metamathemat-
ics of the first order arithmetic. Namely, the formal provability predicate Prτ (x),
originally constructed by Gödel, has several properties resembling the necessity op-
erator of common modal logics: the Löb’s derivability conditions,

T ` ϕ ⇒ T ` Prτ (pϕq),

T ` Prτ (pϕ→ ψq) → (Prτ (pϕq) → Prτ (pψq)),

T ` Prτ (pϕq) → Prτ (pPrτ (pϕq)q)

look just like an axiomatization of a subsystem of S4:

` ϕ ⇒ ` �ϕ,

` �(ϕ→ ψ) → (�ϕ→ �ψ),

` �ϕ→ ��ϕ.

We may form “arithmetical semantics” for formulas in the propositional modal lan-
guage as follows: we substitute arithmetical sentences for propositional atoms, Prτ

for boxes, and we ask whether the resulting sentence (the “arithmetical realization”
or “provability interpretation” of the modal formula) is provable in our arithmetic T .
The provability logic then consists of modal formulas, which are “valid” in every
such “model”.

Solovay showed that this simple provability logic (known as GL) has a nice
axiomatization, Kripke-style semantics and decision procedure. Moreover it is very
stable: almost all reasonable theories T yield the same logic.

Further investigation concentrated on generalization of the Solovay’s result. In
one direction, we may ask about the provability logic for theories which are not
covered by the “almost all” above. This concerns e.g. theories based on the intu-
itionistic logic, such as HA, HA +MP + ECT0 etc., and weak classical theories,
such as I∆0 + Ω1 or even S1

2 .
The second direction is to change the meaning of the modal operator. We may

replace Prτ with some more pathological provability predicate (e.g. the “Rosser’s
provability predicate”, which enables T to prove its own consistency), provability
predicates for non-r.e. theories (such as the second order arithmetic with the ω-
rule), “validity in all transitive models” in strong enough set theories and so on.
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More importantly, we may use a binary modal connective expressing relative in-
terpretability over the base theory, or a similar binary relation (Π0

1-conservativity,
local interpretability, Σ0

1-interpolability, “tolerance” etc.).
Finally, we may take two (or more) theories into account. The simplest way

is to keep the modal language with one operator, translated as the provability
predicate for the first theory, T , and form a logic consisting of modal formulas,
such that all their arithmetical realizations are provable in the second theory, S.
(A remarkable special case is S = Th(N), the “true arithmetic”, which leads to the
so-called absolute provability logic of T .) These logics were completely classified for
any reasonable choice of T and S, due to S. Artëmov, L. Beklemishev and others.

Another way (perhaps more natural) is to use a bimodal language, with two
separate necessity operators (say, � and 4) corresponding to provability predi-
cates for both of the theories, Prτ and Prσ. Such a bimodal logic (denoted by
PRL(T, S)) is capable of expressing basic relationship between T and S, e.g. cer-
tain reflection principles, partial conservativity or axiomatization properties (such
as finite or bounded complexity axiomatizability of one theory over the other).
No general characterizations of possible bimodal logics are known, in fact only
a few of them were described so far, mostly for natural pairs of subsystems of PA.
The first known was the bimodal logic for locally essentially reflexive pairs of
sound theories (e.g. PRL(PA,ZF) or PRL(IΣ1,PA)), given by T. Carlson (see
[Car86]), five other systems are due to L. Beklemishev ([Bek94] and [Bek96])—
typical situations where they are applicable include PRL(IΣk, IΣ`), PRL(I∆0 +
EXP,PRA), PRL(PA,PA + Con(ZF)), PRL(PA,PA + {Conn(PA); n ∈ ω}),
PRL(ZFC,ZFC+CH). (Here Conn(T ) is the iterated consistency assertion for T :
Con1(T ) = Con(T ), Conn+1(T ) = Con(T + Conn(T )).)

The formation of a bimodal provability logic needs both theories to be formulated
in one and the same language (usually, but not necessarily, the language of the
arithmetic). If we use theories with different languages, such as in the example
PRL(PA,ZF) above, it is tacitly assumed that there is a fixed natural interpretation
of the first theory in the second one (e.g. the standard model of PA in ZF), and
we treat the second theory as the set of all sentences of the language of the first
theory, which are provable in the second theory under this interpretation (i.e. the
arithmetical sentences provable in ZF about ω, in our example). Alternatively, we
may identify the first theory with the set of its axioms interpreted in the language
of the second theory.

In this thesis, we will study an extension of the bimodal provability logic, de-
signed for the situation of two particular theories with two different languages. We
will distinguish between the two languages even at the modal level, and perhaps
most importantly, we will deal with two different interpretations of the first theory
in the second one. Thus our modal language will contain:

• two sorts of formulas, corresponding (under the “arithmetical” realization) to
the two first-order languages of the theories in question,

• two modal operators, each one applicable only to formulas of one sort, corre-
sponding to the two provability predicates of our theories,
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• an additional sort-switching operator, which corresponds to one of our inter-
pretations of the first theory in the second one.

(One would expect that there were two sort-switching operators, one for each inter-
pretation. However this would decrease significantly the readability of the resulting
modal formulas, and anyway four non-boolean connectives is a lot, therefore we
decided not to include the second sort-switching operator into our modal language.
Instead, we allow formulas of the first sort to act directly as formulas of the sec-
ond sort, i.e. the second operator is “invisible”. No ambiguity arises, because the
context always determines uniquely the sort of a formula.)

Our two theories are Peano arithmetic (PA) and the Alternative Set Theory
(AST) of P. Vopěnka (axiomatized by A. Sochor). There were several reasons for
this choice:

• Both of these theories are simple enough, their metamathematical properties
were thoroughly studied, especially in the case of PA.

• In AST there are two canonical natural interpretations of PA, given by the
class of the natural numbers (N) and its proper initial segment, the class of
the so-called finite natural numbers (FN). Note that this is a common situ-
ation in theories, formalizing some sort of the Nonstandard Analysis: there
we have the (standard set of) internal natural numbers, which form a proper
end-extension of the (external set of) standard natural numbers. However in
such theories, this end-extension is usually elementary (by the Transfer Prin-
ciple), which means that both types of numbers generate provably equivalent
interpretations of arithmetic and are indistinguishable by means of the prov-
ability logic. We will see that this is not the case in AST, the interpretations
given by N and FN behave very differently.

• Of course, there were also personal reasons. I like AST and I was aware of
some strange-looking modal-like principles governing the interplay of N and
FN, therefore I supposed it would be interesting to study it more deeply.

The material is organized as follows. Chapter 1 deals with the Alternative Set
Theory. The goal of this chapter is to present everything about AST that we
will need for the treatment of our provability logic. We do not expect AST to
be a “common knowledge”, hence we have included a detailed description of its
axioms. Then we give some elementary facts provable in AST and we introduce
a bit of the model theory of the classical first-order logic in AST (because the
derivation of the most important modal principle we use depends on a construction
of saturated models within AST). We do not go into details in this chapter, we just
briefly sketch some basic steps with references to the (hopefully original) sources.
A self-contained presentation would be possible, but it would be too long for our
purposes and it would lead us far away from the main subject of this thesis (which
is the provability logic), anyway only a small piece of chapter 1 is new here (this
small piece is given with full proof, of course).

Chapter 2 investigates the provability logic. In section 2.1 we define our ex-
tension of the bimodal language and its intended “arithmetical” semantics, and
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we present an axiomatization of our provability logic and two auxiliary systems.
Section 2.2 starts with the definition of a variant of the Kripke semantics suitable
for our purposes, then we prove that the two auxiliary systems are complete w.r.t.
their Kripke semantics. In section 2.3 we prove the arithmetical completeness of
the provability logic, using the Kripke completeness results of section 2.2. As the
proof is rather complicated, we have broken part of it into separate lemmas. We
end this section with some examples, and we also put here several random facts that
we considered worth mentioning, without a detailed discussion. In particular, we
include here a short description of some interesting subsystems of our provability
logic, which use the ordinary bimodal language and are therefore comparable to the
above mentioned bimodal provability logics of L. Beklemishev and T. Carlson.

Chapter 2 is intended to be (more or less) self-contained. Apart from the very
end of section 2.3, we give full proofs of everything we state here. We need of
course some information on AST from chapter 1, but actually everything we use
of it are the existence of the N and FN interpretations from 1.2.6 and 1.2.10,
the soundness of AST from 1.3.6, and the contents of the theorem 1.3.7. We
also assume the reader is familiar with some basics of the metamathematics of
arithmetical theories, such as the Löb’s theorem, Gödel’s Diagonal lemma, provable
Σ0

1-completeness, representation of recursive functions and relative interpretation.
As for the notation used in this thesis, we hope it is either standard or defined

here. We employ the widely used “dots-and-corners” convention, such as in the
(somewhat silly) example below:

Prτ (pϕ& x→ ψ(ẏ)q).

This is a formula with two free variables, x and y, and the value of x is expected
to be a Gödel number of a sentence.

Given a theory T with its axiom set represented by a “primitive recursive” for-
mula τ(x), we construct in a natural way another “primitive recursive” formula
Prfτ (x, y), formalizing the predicate “x is a Gödel number of a proof in T of a for-
mula with Gödel number y”. Then the provability predicate for T is the Σ0

1-formula

Prτ (y) = ∃x Prfτ (x, y).

The formalized consistency statement for T is the Π0
1-sentence

Conτ = ∼Prτ (p⊥q),

where ⊥ is the Boolean constant for “falsity” or “contradiction”.
When dealing with particular theories such as PA or AST, we always assume

that their axiom set is defined by a formula τ constructed naturally according to the
standard description of their axioms, we do not want to explore here any strange
behavior arising from an unusual numeration of such theories. (The same remark
applies also to the assignment of Prfτ to τ above, of course.) In this case, we write
simply PrT for Prτ , and Con(T ) for Conτ .

Relative interpretations are written as superscripts, so if I : T B S is an inter-
pretation and ϕ a formula in the language of S, then ϕI is the interpretation of this
formula in the language of T under I.
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Chapter 1

The Alternative Set Theory

The Alternative Set Theory was developed in the seventies by Petr Vopěnka and
his seminar (Antońın Sochor, Josef Mlček, Karel Čuda, Blanka Vojtášková, Pavol
Zlatoš, Jǐŕı Witzany and many others) as an approach alternative to the Cantorian
view on foundation of mathematics, expressed e.g. in the classical set theory ZFC.
We will not try to explain or defend here the philosophical and phenomenological
principles governing the Alternative Set Theory, an interested reader is advised to
consult excellent Vopěnka’s book [Vop79]. Provability logic, which we will exam-
ine, deals rather with metamathematical properties of a formal first–order theory
corresponding to the Alternative Set Theory.

Instead of a systematic treatment of the Alternative Set Theory we will present
a brief survey of facts needed later in the discussion of the provability logic, with
references to the original sources, because a detailed development of the Alternative
Set Theory is beyond the scope of this thesis.

1.1 Axioms of AST

The Alternative Set Theory was initially used as an informal framework for doing
mathematics, based on general postulates rather than axioms, and open for pos-
sibility of adding new principles where needed. There were several attempts to
formalize the Alternative Set Theory more rigorously (see e.g. [Mar89]), the most
prominent one is the axiomatic theory AST due to Antońın Sochor ([Soch79], cf.
also [Soch89]; most ideas were present already in [Vop79]), which we will adopt in
this thesis.

AST is a theory in the classical first–order predicate calculus with equality in
the language consisting of one binary predicate ∈, the membership relation. There
are two types of objects in AST, classes and sets, but officially only classes are
objects of the formal theory, sets being defined as classes satisfying the formula
∃Y X ∈ Y (abbreviated as Set(X)), i.e. a class is a set iff it is a member of another
class (cf. usual axiomatics of the von Neumann–Gödel–Bernays set theory GB).
Traditionally, capital Latin letters X, Y , . . . are used as general class variables,
whereas small Latin letters x, y, . . . are reserved for sets only. According to this,
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general formulas of the ∈–language are denoted by capital Greek letters Φ, Ψ, . . . ,
and small Greek letters ϕ, ψ, . . . are used for set formulas, i.e. formulas with all
free variables and quantifiers restricted to sets.

In the sequel we will state the axioms of AST. Many of them are formulated
using defined concepts, either usual in set theory or specific for AST, therefore we
will simultaneously state some basic definitions. Of course, it is possible to rewrite
all the axioms using ∈ and = only, but it would result into unintelligible clusters of
symbols spanning several lines and we find it useless for our purposes.

Axiom 1. Extensionality: ∀Z(Z ∈ X ↔ Z ∈ Y ) → X = Y

Axiom 2. Comprehension schema: ∃X ∀t (t ∈ X ↔ Φ),
for all formulas Φ without a free occurrence of X

Definition 1.1.1 (AST) The class X, which is ensured to exist by the compre-
hension axiom for Φ, is denoted by {t; Φ}. (This class is unique by extensionality.)
Using comprehension one also defines usual operations such as X ∩ Y , X ∪ Y , −X,
∅, {x, y}, the universal class V, etc.

Axiom 3. Existence of sets: Set(∅) & ∀x∀y Set(x ∪ {y})

An immediate consequence of this axiom is that the pair {x, y} is a set whenever x
and y are sets. This enables us to define the ordered pair 〈x, y〉 = {{x}, {x, y}} and
class operations X × Y , X � Y , dom(X), rng(X), X−1, X ′′

Y , and X ◦ Y as usual.
Also the definition of a relation and a function is quite standard, we write Fnc(F )
for “F is a function”.

The form of the next axiom is a bit involved, so we give its motivation first. The
idea is that sets in AST behave like finite sets internally, i.e. as long as we take
only set-definable properties (set formulas) into account. In particular, we would
like our sets to satisfy the following schema of induction for all set formulas ϕ:

ϕ(∅) & ∀x∀y (ϕ(x) → ϕ(x ∪ {y})) → ∀xϕ(x).

However for certain technical reasons we need a stronger form of induction: namely,
the induction should hold for all formal set formulas, which may be written approx-
imately as

∀φ 〈V,∈〉 � p(φ(∅) & ∀x∀y (φ(x) → φ(x ∪ {y})) → ∀xφ(x))q.

This formulation requires a sort of coding of the logical syntax in AST and a for-
malization of the satisfaction relation �. It is not desirable to develop all such
techniques before stating an axiom of the theory, and fortunately it is possible to
reformulate the induction axiom using the notion of Gödelian operations.

Definition 1.1.2 (AST) Ordered pair of classes X and Y is the class 〈X,Y 〉c =
({0} × X) ∪ ({1} × Y ), where 0 = ∅ and 1 = {∅}. A coding pair is any pair of
classes 〈K,S〉c. A class X is a member of the system coded by the pair 〈K,S〉c iff
∃x ∈ K X = S

′′{x}. By abuse of language we will speak about a codable system of
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classes M = 〈K,S〉c (also called class of classes) instead of a coding pair 〈K,S〉c.
With this terminology we will write X ∈ M for “X is a member of the system
coded by M” and we will use notations such as M = {X; X ∈M}.

A codable system M is closed under Gödelian operations iff E ∈ M and for
all X,Y ∈ M we have rng(X) ∈ M, X−1 ∈ M, Cnv(X) ∈ M, X \ Y ∈ M
and X × Y ∈ M, where E denotes the class {〈x, y〉; x ∈ y} and Cnv(X) =
{〈x, 〈y, z〉〉; 〈z, 〈x, y〉〉 ∈ X}.

Axiom 4. Induction: There exists a codable system M closed under Gödelian
operations such that ∀x x ∈M and

∀X ∈M [∅ ∈ X & ∀x∀y (x ∈ X → x ∪ {y} ∈ X) → X = V].

Definition 1.1.3 (AST) The class of the finite natural numbers FN is defined as

{x; ∀y, z ∈ x (y ⊆ x& (y ∈ z ∨ y = z ∨ z ∈ y)) & ∀X ⊆ x Set(X)}.

Axiom 5. Prolongation: Fnc(F ) & dom(F ) = FN → ∃f (Fnc(f) & F ⊆ f)

Definition 1.1.4 (AST) A relation R ⊆ X ×X is a well-ordering of X (written
as WO(X,R)) iff it is a strict partial order (i.e. a transitive irreflexive relation) and
every non-empty class Y ⊆ X has an R-least element (i.e. an x ∈ Y such that all
y ∈ Y different from x satisfy 〈x, y〉 ∈ R).

Axiom 6. Choice: ∃R WO(V, R)

Definition 1.1.5 (AST) A class X is subvalent to a class Y (in symbols X � Y

or |X| ≤ |Y |) iff there exists an injective function F : X → Y . Classes X and Y

are equivalent (written X ≈ Y or |X| = |Y |) iff there exists a bijection F : X → Y .

Axiom 7. Cardinalities: X � FN ∨ X ≈ V

Axiom 8. Foundation (or ∈-induction): for any set formula ϕ,

∀x (∀y ∈ x ϕ(y) → ϕ(x)) → ∀x ϕ(x).

The Prolongation Axiom, asserting that any function from FN has a prolon-
gation which is a set function, is probably the most important axiom of AST, it
gives AST its special flavour, different from the classical set theory. It has many
interesting consequences, e.g. there is a subclass of a set, which is not a set itself.
There are also metamathematical facts showing that the Prolongation Axiom plays
a key rôle in AST, see [Soch82] §7.
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1.2 Some basic facts about AST

The material of this section belongs mainly to the folklore of the subject. General
treatment of the Alternative Set Theory can be found in [Vop79], some technical
details concerning the axiomatization of AST are in [Soch79]. An introduction to
inductive definitions in AST is in [Tz86].

Let us start with an above-mentioned fact: the induction axiom of AST yields
the corresponding induction schema, by an easy argument essentially equivalent to
the usual proof of the normal comprehension schema in the finitely axiomatized
version of GB.

Lemma 1.2.1 (Sochor [Soch79] §2)
Let ϕ be a set formula with all free variables among x1, . . . , xn, n ≥ 1. Then AST
proves

(i) the class {〈x1, . . . , xn〉; ϕ(x1, . . . , xn)} belongs to every codable system closed

under Gödelian operations,

(ii) for any sets u2, . . . , un the class {x; ϕ(x, u2, . . . , un)} belongs to every codable

system closed under Gödelian operations and containing all sets,

(iii) the set induction axiom for ϕ:

ϕ(∅) & ∀x∀y (ϕ(x) → ϕ(x ∪ {y})) → ∀x ϕ(x),

the parameters x2, . . . , xn being omitted for the sake of readability.

R

As shown by Vopěnka ([Vop79] ch. I sec. 1), the axioms of extensionality, exis-
tence of sets and ∈-induction (i.e. axioms 1, 3 and 8) together with the set induction
schema imply all axioms of the Zermelo-Fraenkel theory of finite sets, ZFfin , i.e.
axioms of pair, sum set, power set, foundation and transitive closure, schemata
of separation and replacement for all set formulas, and negation of the axiom of
infinity. This leads to a straightforward construction of the natural numbers in
AST.

Definition 1.2.2 (ZFfin) A class X is transitive, in symbols Trans(X), if every
element of X is also a subset of X. The class of the natural numbers is defined by

N = {x; Trans(x) & ∀y, z ∈ x (y ∈ z ∨ y = z ∨ z ∈ y)}.

Let 0 = ∅ and S(x) = x ∪ {x}. Also for x, y ∈ N we define x < y ↔ x ∈ y. We
write 1 for S(0), 2 for S(1) etc.

Lemma 1.2.3 (ZFfin; cf. [Vop79] ch. II sec. 1) N is a proper transitive class,

containing 0, closed under S and linearly ordered by <. Every x, y ∈ N satisfy

S(x) 6= 0,

S(x) = S(y) → x = y,

x = 0 ∨ ∃z ∈ N x = S(z).
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For any set formula ϕ we have the principle of ordinal induction,

∀x ∈ N (∀y ∈ x ϕ(y) → ϕ(x)) → ∀x ∈ N ϕ(x),

and induction for N,

ϕ(0) & ∀x ∈ N (ϕ(x) → ϕ(S(x))) → ∀x ∈ N ϕ(x).

R

Lemma 1.2.4 (ZFfin; cf. [Vop79] l.c.) Let X be a class defined by a set formula

(shortly: set-definable), F : X → X a set-definable function and x0 ∈ X. Then

there is a unique set-definable function G : N → X such that G(0) = x0 and

∀n ∈ N G(S(n)) = F (G(n)). R

Corollary 1.2.5 (ZFfin) There are unique set-definable functions + : N×N → N
and · : N×N → N satisfying

x+ 0 = x,

x+ S(y) = S(x+ y),

x · 0 = 0,

x · S(y) = x · y + x.

R

Corollary 1.2.6 (cf. [Vop79] l.c.) There is an interpretation N of PA in ZFfin

(and a fortiori in AST) with absolute equality such that the domain of N is the

class N and the arithmetical operations are interpreted by the functions +, ·, S and

0 defined in 1.2.5 and 1.2.2. R

Definition 1.2.7 (AST) A class X is finite iff ∀Y ⊆ X Set(Y ), otherwise it is
called infinite. X is at most countable iff X � FN, otherwise it is uncountable.
X is countable iff X ≈ FN. We write Fin(X) for “X is finite” and define Fin =
{x; Fin(x)}.

Remark 1.2.8 Any finite class is a set. All uncountable classes have the same
cardinality as V, by the axiom of cardinalities. Note that FN = N ∩ Fin, by the
definition of these three classes.

The following lemma is an easy consequence of the definition of FN and properties
of the natural numbers.

Lemma 1.2.9 (AST; [Vop79] l.c.) FN is the smallest class containing 0 and

closed under S. R

Corollary 1.2.10 (AST; cf. [Vop79] l.c.) FN is closed under + and ·, and the

restriction of the arithmetical operations from N to FN determines an interpreta-

tion FN of PA in AST. Moreover, FN satisfies the schema of full induction:

Φ(0) & ∀n ∈ FN (Φ(n) → Φ(S(n))) → ∀n ∈ FN Φ(n),

Φ any formula in the language of AST. R
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We need to develop in AST the logical syntax and basic model theory. One
of the most important tools in mathematical logic are definitions and proofs “by
structural induction”. Due to the comprehension axiom, there is an elegant general
framework to handle such an induction in AST.

Definition 1.2.11 (AST) Assume

∀X1 · · · ∀Xn ∀x1 · · · ∀xm ∃!Y Φ(X1, . . . , Xn, x1, . . . , xm, Y ).

Then we say that the formula Φ determines a definable operator on classes denoted
by

X1, . . . , Xn, x1, . . . , xm 7−→ Y,

where Y is the class satisfying Φ(X1, . . . , Xn, x1, . . . , xm, Y ).
A definable operator on classes X 7−→ L(X) is called monotonous iff

∀X ∀Y (X ⊆ Y → L(X) ⊆ L(Y )).

Lemma 1.2.12 (AST) Let X 7−→ L(X) be a monotonous operator.

(i) There is a unique smallest class Y such that L(Y ) ⊆ Y , we will denote this

class by L∗. Moreover, L∗ is a fix-point of L, i.e. L(L∗) = L∗.

(ii) (The principle of monotonous induction.) L(X ∩ L∗) ⊆ X → L∗ ⊆ X, in

particular for any formula Φ,

∀x ∈ L({u ∈ L∗; Φ(u)}) Φ(x) → ∀x ∈ L∗ Φ(x).

(iii) The relation @ on L∗, defined by y @ x↔ ∀X ⊆ L∗ (x ∈ L(X) → y ∈ X), is

well-founded.

Proof:
Put L∗ = {x; ∀X (L(X) ⊆ X → x ∈ X)} =

⋂
{X; L(X) ⊆ X}. It is only

a matter of routine to show that this choice works. R

Remark 1.2.13 In practice, the part (i) of 1.2.12 is used to cover an inductive
definition of a term, formula etc. The part (ii) then provides the corresponding
principle of induction “on the complexity of a term (formula, . . . )”. Finally, to
deal with a definition of an object (e.g. a valuation of terms) “by recursion on the
complexity of a term”, we employ the part (iii) together with a construction by
well-founded recursion, which works in AST just like in classical ZF:

Proposition 1.2.14 (AST; cf. [Vop79] ch. II secs. 1, 3)
(Construction of classes by well-founded recursion.) Let R be a well-founded relation

on U and let x,X 7−→ L(x,X) be a definable operator. Then there exists a unique

relation S ⊆ U ×V such that S
′′{x} = L(x, S � (R−1′′{x})) for every x ∈ U . R
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1.3 Logical syntax and model theory in AST

In this section we will sketch a part of the metatheory of the classical predicate
calculus in AST and we will discuss some properties of AST necessary for our
treatment of the provability logic for AST. Basic definitions of logical syntax in
AST are already in [Vop79]. Some issues concerning proof theory and model the-
ory in AST are stated in [Soch79, Soch82] and other papers, e.g. [ČV86], [RS81],
[Resl79].

In view of the remark 1.2.13, a formalization of the logical syntax in AST is
very smooth. We define a first order language to be a class L equipped with an arity
function Ar : L→ FN× 2, where s ∈ L is an n-ary predicate if Ar(s) = 〈n, 0〉 and
it is an n-ary function symbol if Ar(s) = 〈n, 1〉. Using 1.2.12, we define the class
Term(L) of the L-terms as the smallest class containing the variables {pxnq; n ∈
FN} and closed under composition with function symbols: if f ∈ L is an n-ary
function symbol and t0, . . . , tn−1 are L-terms, then pf(t0, . . . , tn−1)q is an L-term
too. (We may put e.g. pxnq = n and pf(t0, . . . , tn−1)q = 〈f, g〉, where g is the
function such that g(i) = ti for i < n.)

In a similar fashion we may define inductively the class Form(L) of the L-
formulas, the sets of bounded and free variables occuring in a formula, the substi-
tution of a term for a variable etc. This suffices to express a simple Hilbert-style
calculus for the classical first order predicate logic. We define the notion of a theory
(just any class of sentences) and formulas provable in the theory (this is an inductive
definition again).

A model A is a non-empty class A and an assignment of a realization sA to
every symbol s ∈ L, such that sA is an n-ary (class) relation on A if s is an n-
ary predicate, and sA is an n-ary (class) operation on A if s is an n-ary function
symbol. (All this data has to be coded into a single class somehow, but this poses
no problem.) A valuation in A is any function E : FN → A. (Here E(n) is the
value assigned by E to the variable pxnq.) The system of all valuations is codable
and any valuation is representable by a set, because of the prolongation axiom: for
any valuation E there is a set function e such that E ⊆ e, conversely any function
e with FN ⊆ dom(e) and e′′FN ⊆ A determines a valuation E = e � FN.

By recursion on complexity we may extend a valuation E uniquely to all terms
t ∈ Term(L) and we may build a satisfaction relation A � φ[E], using the Tarski’s
truth conditions. Now we know what a model of a theory T (or a formula φ) is,
and we can define the semantical consequence relation, T � φ.

It is clear that AST proves basic properties of the first order logic, such as
the Deduction Theorem or the soundness of the calculus wrt its semantics. More
importantly, AST proves the Completeness Theorem:

Theorem 1.3.1 (AST; cf. [Soch79] §3)
Let T be a theory in a language L and φ an L-formula.

(i) If T is consistent then it has a model.

(ii) T ` φ ⇔ T � φ

14



Proof (sketch):
As usual, it suffices to derive the first part. Given a consistent theory T , we recur-
sively add Henkin constants to it. We obtain finally a Henkin theory T ′ ⊇ T (in
a language L′ ⊇ L) and we prove easily that T ′ is consistent too. Using the axiom
of choice we find a well-ordering of the class of all L′-sentences. We construct an
increasing chain of consistent theories by recursion along this well-ordering (using
1.2.14) such that the union of the chain, T ′′, contains φ or p∼ φq for every L′-
sentence φ. We get a consistent complete Henkin theory T ′′ extending T and such
a theory has a canonical model. R

We define a model A to be countably saturated if any countable sequence of
formulas (with one free variable and with parameters from A) is realizable in A,
provided that all its finite subsequences are realizable. (The corresponding notion
in classical model theory is an ℵ1-saturated model, or more precisely an ℵ1-compact
model, which is a bit weaker notion for uncountable languages.) We have a strength-
ened version of the Completeness Theorem:

Theorem 1.3.2 (AST; cf. [Soch82] §5)
Any consistent theory has a countably saturated model.

Proof (sketch):
Several methods work. We may e.g. take any model of the theory and construct its
ultrapower over a uniform ultrafilter on FN, we may adopt the proof of 1.3.1 by
adding recursively constants realizing any sequence of formulas consistent with the
theory, we may use the so-called revealments (see [SV80]) etc. A crucial ingredient
in all these proofs is the prolongation axiom, which enables us to code countable
sequences by sets. R

Lemma 1.3.3 (AST) The structure FN = 〈FN, 0, S,+, ·〉 is a model of PA and

V = 〈V,E〉 is a model of ZFfin.

Proof (sketch):
The first assertion follows almost directly from 1.2.10. By lemma 1.2.1, V is an
interpretation of ZFfin. To show that it is a model of ZFfin we have to demonstrate
that it validates all (formal) instances of the set induction schema. By formalization
of the proof of 1.2.1 in AST we find out that any codable system closed under
Gödelian operations and containing all sets has to contain all classes definable in
V, hence V is a model of the set induction schema by the axiom 4. R

Lemma 1.3.4 (PA) ZFfin is a conservative extension of PA, i.e. for any arith-

metical sentence ϕ, if ZFfin ` ϕN then PA ` ϕ.

Proof (sketch):
In PA we define

x ∈I y ⇔
⌊ y
2x

⌋
is odd.
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It is possible to check that this predicate determines an interpretation I of ZFfin in
PA such that

PA ` ϕ↔ (ϕN)I ,

ZFfin ` ψ ↔ (ψI)N

for any arithmetical sentence ϕ and any sentence ψ of the ∈-language. This implies
that our lemma holds. R

Theorem 1.3.5 (PA; Sochor [Soch82] §5) Let T be an extension of AST and

M a countably saturated model of ZFfin definable in T . Then there is an inter-

pretation I of AST in T with absolute equality such that T proves VI ' M and

FN I ' FN , where VI is the structure 〈VI ,EI〉 and FN I = 〈FNI , 0I , SI ,+I , ·I〉.

Proof (sketch):
Let M = 〈M,∈M 〉. The interpretation I is defined so that, roughly speaking,
(sets)I are members of M and (classes)I are subclasses of M . More precisely, we
identify any x ∈ M with its extension x̃ = {y ∈ M ; y ∈M x} ⊆ M , thus we let the
domain of I consist of all subclasses of M , and for any such X,Y ⊆M we put

X ∈I Y ⇔ ∃x ∈ Y x̃ = X.

It is not hard to show that (Set(X))I iff X = x̃ for some x ∈ M , moreover the
map x 7→ x̃ is an isomorphic embedding wrt ∈. This yields VI ' M, and I is an
interpretation of ZFfin (in particular of axioms 3 and 8), because M is a model of
ZFfin. It is clear that I is an interpretation of axioms 1 and 2 (i.e. extensionality
and comprehension).

We define a function ν : FN → M such that (ν(0))̃ = ∅ and (ν(n + 1))̃ =
(ν(n))̃∪{ν(n)}. One can show that rng(ν) equals FNI and ν is an isomorphism of
FN and FN I .

There is a well-ordering ≺ of M . We put R = {〈u, v〉M ; u ≺ v}. It follows easily
that (WO(V, R))I , i.e. I is an interpretation of the axiom of choice (6). A similar
argument shows that I interprets the axiom of cardinalities (7).

The structure VI ' M is a model of ZFfin, thus (V is a model of ZFfin)I . In
other words, from the satisfaction relation forM we may construct easily a (codable
system)I witnessing that I interprets the induction axiom (4).

It remains to show that I is an interpretation of the prolongation axiom (5), and
this is the place where the saturation of M is needed. Assume that F : FNI →M ,
we have to find f ∈ M such that F ⊆ f̃ and (f̃ is a function)I . Let S be the
countable sequence of formulas {pFnc(x)&〈n, F (n)〉 ∈ xq; n ∈ FNI}. Every finite
subset of S is realized in M, hence there is f ∈ M realizing the whole sequence,
and this f works. R

Proposition 1.3.6 (ZF; Sochor [Soch83] §9) AST is arithmetically sound, i.e.

if AST ` ϕFN, ϕ an arithmetical sentence, then ϕ holds in N = 〈ω, 0, S,+, ·〉, the

standard model of arithmetic.
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Proof (sketch):
Without loss of generality we may work in ZFC+CH. The Continuum Hypothesis
implies that the standard model of ZFfin, 〈pω,∈〉, has a saturated elementary exten-
sion A = 〈A, eA〉 of cardinality ℵ1. Define a new model B = 〈B, eB〉 by B = P(A)
and

eB = {〈x, y〉 ∈ B2; ∃u ∈ y x = {v ∈ A; 〈v, u〉 ∈ eA}}.

The same argument as in theorem 1.3.5 shows that B � AST and FNB ' N
(moreover NB ' NA ≡ N). If AST ` ϕFN then B � ϕFN, i.e. FNB � ϕ, therefore
N � ϕ. R

Theorem 1.3.7 Let ϕ and ψ be arithmetical sentences and σ(x1, . . . , xn) a Σ0
1-

formula.

(i) AST proves

PrFN
PA (pϕq) → ϕFN,

PrFN
PA (pϕq) → ϕN,

∀x1, . . . , xn ∈ FN (σFN(x1, . . . , xn) → σN(x1, . . . , xn)).

(ii) PA proves

PrAST(pϕFN→̇ψNq) → PrAST(pϕFN→̇PrFN
PA (pψq)q).

Proof:
Work in AST, and suppose that PrFN

PA (pϕq), i.e. PA ` ϕ. By 1.3.3, FN � ϕ, thus
ϕFN. Also ZFfin ` pϕNq by 1.2.6, therefore V � pϕNq by 1.3.3, hence ϕN.

The last formula of (i) can be easily demonstrated by an induction on the
complexity of σ, using only the fact that N is an end-extension of FN.

To prove the part (ii), it will suffice to present an interpretation of AST+ϕFN+
∼ψN in the theory T = AST + ϕFN + ConFN(PA +∼ψ). However, by 1.3.2 and
1.3.4, T proves that there is a countably saturated model M of ZFfin + ∼ψN. By
1.3.5 there is an interpretation I of AST in T such that FN I ' FN and VI 'M.
But FN � ϕ and M � ∼ψN, hence I is an interpretation of AST+ϕFN +∼ψN in
T . (Well, in fact 1.3.5 requires a countably saturated model definable in the theory
in question. Therefore we form a theory T ′ = T+“M is a countably saturated
model of ZFfin +∼ψN” in a language augmented by a new constant M. We find an
interpretation of AST + ϕFN +∼ψN in T ′ and we realize (in PA) that T ′ is fully
conservative over T .) R

Remark 1.3.8 Part (ii) of the theorem 1.3.7 is essentially the only thing of this
chapter, which is due to the author of this thesis.

17



Chapter 2

The provability logic

2.1 Basic definitions

Our modal analysis of the provability principles of AST will try to explore as much
as possible the interplay between the two canonical interpretations of PA in AST,
therefore we chose a rather rich language:

Definition 2.1.1 The extended bimodal language uses the following symbols:

• propositional connectives → and ⊥ (the others being defined in the usual
way),

• unary modal operators 4 and �,

• a unary operator N,

• arithmetical propositional atoms pi (for every i ∈ ω),

• general propositional atoms qi (i ∈ ω).

There are two sorts of formulas in the extended language: the arithmetical modal
formulas, denoted by lowercase Greek letters, and the general modal formulas (or
simply formulas), denoted by uppercase Latin letters. These are defined inductively
as follows:

• every a.m.f. is also a g.m.f.,

• ⊥ is an a.m.f.,

• every pi is an a.m.f. and every qi is a g.m.f.,

• (ϕ → ψ) is an a.m.f. and (A → B) is a g.m.f. whenever ϕ, ψ are a.m.f. and
A, B are g.m.f.,

• 4A and �ϕ are a.m.f. whenever A is a g.m.f. and ϕ an a.m.f.,

• (ϕ)N is a g.m.f. provided that ϕ is an a.m.f.

18



Let AMF and GMF be the sets of all arithmetical and general modal formulas
respectively.

Remark 2.1.2 The arithmetical formulas are the prominent ones, the g.m.f. play
an auxiliary rôle. Having the provability interpretation in mind, the a.m.f. cor-
respond to sentences of the arithmetic whereas g.m.f. represent sentences in the
language of the set theory. We take FN as the prominent interpretation of PA in
AST, an a.m.f. used in a g.m.f. context represents an arithmetical sentence inter-
preted in FN. The additional operator N is used to override this default behavior
and to force an arithmetical sentence to be interpreted in N. The following definition
is a precise formulation of these remarks.

Definition 2.1.3 A provability interpretation (or arithmetical realization) of the
extended language is a pair ∗ = 〈∗, ∗〉, where ∗ maps all a.m.f. to sentences of PA, ∗
maps g.m.f. to sentences of AST and the following inductive clauses hold for every
a.m.f. ϕ, ψ and every g.m.f. A, B:

• ϕ∗=(ϕ∗)FN,

• ⊥∗=⊥,

• (ϕ→ ψ)∗=ϕ∗ → ψ∗, (A→ B)∗=A∗ → B∗,

• (4A)∗=PrAST(pA∗q), (�ϕ)∗=PrPA(pϕ∗q),

• (ϕN)∗=(ϕ∗)N.

The provability logics are defined as follows:

PRLext(AST,PA) = {ϕ; ∀ ∗ (∗ prov. int. ⇒ PA ` ϕ∗), ϕ is an a.m.f.},

PRL+
ext(AST,PA) = {ϕ; ∀ ∗ (∗ prov. int. ⇒ N � ϕ∗), ϕ is an a.m.f.}.

Remark 2.1.4 In order to save parentheses we adopt the convention that N has
a higher priority than other symbols of our language, so that 4ϕN reads 4(ϕN).
We will sometimes write N right after the head symbol of a formula, so that
4Nϕ=(4ϕ)N (following the pattern sin2 x = (sinx)2).

Our main result will be a complete axiomatization of the above mentioned prov-
ability logic: we will show that

PRLext(AST,PA) = CSRL,

PRL+
ext(AST,PA) = CSRL#,

where the systems CSRL and CSRL# are defined below.

Definition 2.1.5 The axioms of the logic CSRL are the following a.m.f.:

A1) tautologies of the Classical Propositional Calculus,

A2) 4A, A is a tautology of CPC,

19



B1) 4(⊥N → ⊥),

B2) 4((ϕ→ ψ)N → (ϕN → ψN)),

B3) 4((ϕN → ψN) → (ϕ→ ψ)N),

C1) �(ϕ→ ψ) → (�ϕ→ �ψ),

C2) 4(A→ B) → (4A→4B),

C3) �(�ϕ→ ϕ) → �ϕ,

C4) 4A→ �4A,

C5) �ϕ→4ϕ,

D1) 4(�ϕ→ ϕN),

D2) 4(ϕ→ ψN) →4(ϕ→ �ψ),

D3) 4(�ϕ→ ϕ),

its derivation rules are Modus Ponens and the Necessitation Rule:

MP)
ϕ ϕ→ ψ

ψ

Nec)
ϕ

�ϕ

The logic CSRL# is the closure of CSRL and the schema

S) 4ϕ→ ϕ

under Modus Ponens.
We define also auxiliary systems L1 and L3: both of them include the rules

MP and Nec, all axioms from the groups A, B and C, and axiom D1, moreover L3

contains D2.

Remark 2.1.6 It may seem that thirteen axiom schemata is too much. Note that
the axioms from the groups A, B, C and D have a clear meaning: group A says
that the whole thing extends the Propositional Calculus, group B expresses the fact
that the interpretation N commutes with Boolean connectives, group C contains
well-known axioms of the usual bimodal provability logic for extensions of theories
(CSM, see remark 2.3.14), thus only the three axioms of group D give nontrivial
information about our pair of theories.

2.2 Kripke completeness

In order to get the arithmetical completeness of CSRL via a Solovay-like argument
(cf. [Sol76]), we need a sort of Kripke semantics for the logic discussed. The following
definition modifies the Carlson models for bimodal logics ([Car86], cf. [Bek96]).
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Definition 2.2.1 An (extended Kripke) frame is a structure W = 〈W,<,D,N〉,
where W is a non-empty set, < a binary relation on W , D a subset of W and N

a function N : D → W . An (extended Kripke) model in the frame W is a pair
〈W,〉, where  is a relation  ⊆ ((W × AMF ) ∪ (D × GMF )) satisfying the
following conditions (w ∈W , d ∈ D, ϕ,ψ ∈ AMF , A,B ∈ GMF ):

• w 6 ⊥,

• w  ϕ→ ψ ⇔ w 6 ϕ or w  ψ,
d  A→ B ⇔ d 6 A or d  B,

• w  �ϕ ⇔ ∀w′ ∈W (w < w′ ⇒ w′  ϕ),

• w  4A ⇔ ∀d′ ∈ D (w < d′ ⇒ d′  A),

• d  ϕN ⇔ N(d)  ϕ.

A formula ϕ is valid in the model 〈W,〉 if w  ϕ for all w ∈W , and it is valid in
the frame W if it is valid in every model  in the frame W. The model or frame
is finite whenever W is and it is tree-like if 〈W,<〉 is a tree.

At first we will deal with the Kripke frame characterization of L1.

Definition 2.2.2 A frame 〈W,<,D,N〉 is called an L1-frame if < is transitive and
converse well-founded and for every d ∈ D, d < N(d).

Lemma 2.2.3 Every theorem of L1 is valid in any L1-frame.

Proof:
By induction on the length of a proof. It is clear from the definition of satisfaction
that the validity in a given model is preserved under MP and Nec, moreover the
evaluation of Boolean connectives coincides with the usual two-valued semantics of
the CPC, hence A1 and A2 are valid in every model. As for B1–B3, observe that
d  (ϕ→ ψ)N iff N(d)  (ϕ→ ψ) iff d  (ϕN → ψN). Axioms C1 and C2: if every
w′ > w satisfies ϕ→ ψ and every w′ > w satisfies ϕ, then every w′ > w satisfies ψ
too, the case of 4 is similar.

C3: let w 6 �ϕ and let w′ > w be a maximal element of W such that w′ 6 ϕ (it
exists by the converse well-foundedness of <). By transitivity of < and maximality
of w′ we have w′  �ϕ, therefore w′ 6 �ϕ→ ϕ and w 6 �(�ϕ→ ϕ).

C4: suppose that w  4A and w′ > w, we have to show w′  4A. Now if
d ∈ D and d > w′ then d > w by transitivity and d  A by the hypothesis, thus
w′  4A as required.

C5: if every w′ > w satisfies ϕ then a fortiori every d > w from D satisfies ϕ.
D1: let d ∈ D and d  �ϕ. We have d < N(d), thus N(d)  ϕ and d  ϕN. R

Proposition 2.2.4 Let ϕ be an a.m.f. The formula ϕ is provable in L1 iff it is

valid in all finite tree-like L1-frames 〈W,<,D,N〉 with rng(N) ∩D = ∅.
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Proof:
By the lemma it suffices to show the right-to-left implication. Assume L1 0 ϕ. The
proof will proceed as follows: at first we construct a sort of a “universal model” of L1,
which is not a model in the sense of our definition, then we transform this structure
into a tree-like extended Kripke model, and finally we find its finite subtree, which
will turn out to be an L1-model with all the desired properties.

A set X of a.m.f. is consistent provided there are no formulas ϕ1, . . . , ϕn ∈ X

such that L1 ` ∼(ϕ1 & · · · & ϕn). Analogously, a set Y of g.m.f. is defined to be
consistent if there do not exist A1, . . . , An ∈ Y such that L1 ` 4∼(A1 & · · ·&An).
Let K be the set of all maximal consistent sets of a.m.f. (i.e. consistent sets maximal
wrt inclusion) and let G be the set of all maximal consistent sets of g.m.f.

For any Y ⊆ GMF put YN = {ψ; ψN ∈ Y }, similarly Y� = {ψ; �ψ ∈ Y } and
Y4 = {A; 4A ∈ Y }. If Y ∈ G we define F (Y ) = Y ∩ AMF and N(Y ) = YN. If
X,X ′ ∈ K and Y ∈ G, put

X < X ′ ⇔ X� ⊆ X ′,

X ≺ Y ⇔ X4 ⊆ Y.

Immediately from the definition we see that for any X ∈ K, Y ∈ G and any ψ
and A either ψ ∈ X or ∼ψ ∈ X and similarly A ∈ Y or ∼A ∈ Y . As a corollary we
get that F (Y ) and N(Y ) belong to K whenever Y ∈ G.

Any consistent set of a.m.f. or g.m.f. is included in a maximal one, by the Zorn
lemma.

Maximal consistent sets are deductively closed: given X ∈ K and ψ1, . . . , ψn

in X such that ` ψ1 & · · · & ψn → ψ, we have ψ ∈ X. Similarly if Y ∈ G,
A1, . . . , An ∈ Y and ` 4(A1 & · · ·&An → A) then A ∈ Y .

Sublemma 1 Let X ∈ K.

(i) If �ψ 6∈ X then X� ∪ {∼ψ} is consistent.

(ii) If 4A 6∈ X then X4 ∪ {∼A} is consistent.

Proof:
If X4 ∪ {∼A} is inconsistent there exist A1, . . . , An such that 4Ai ∈ X and `
4(A1 & · · · & An → A). Then ` 4A1 & · · · &4An → 4A by propositional logic
and C2, thus 4A ∈ X, a contradiction. The case (i) is analogous (easier). R

Sublemma 2 Let X,X ′, X ′′ ∈ K and Y ∈ G.

(i) X < X ′ < X ′′ ⇒ X < X ′′,

(ii) X < X ′ ≺ Y ⇒ X ≺ Y ,

(iii) X ≺ Y ⇒ X < F (Y ),

(iv) F (Y ) < N(Y ).
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Proof:
Suppose that X < X ′, X ′ < X ′′ and �ψ ∈ X. As L1 proves1 �ψ → ��ψ we have
��ψ ∈ X, therefore �ψ ∈ X ′ and ψ ∈ X ′′. The rest is similar, using the axioms
C4, C5 and D1. R

Since we assume 0 ϕ, the set {∼ϕ} is consistent and we can find X0 ∈ K such that
ϕ 6∈ X0. We define a tree-like model W = 〈W,<,D,N,〉 by

W = {〈X0, . . . , Xn〉;Xi ∈ K ∪G, Xi < Xi+1 ∨ Xi ≺ Xi+1 ∨

∨ F (Xi) < Xi+1 ∨ F (Xi) ≺ Xi+1},

D = {〈X0, . . . , Xn〉 ∈W ; Xn ∈ G},

N(〈X0, . . . , Xn〉) = 〈X0, . . . , Xn, N(Xn)〉 (where Xn ∈ G),

〈X0, . . . , Xn〉 < 〈X0, Y1, . . . , Ym〉 ⇔ n < m, X1 = Y1, . . . , Xn = Yn (i.e. <=⊂),

〈X0, . . . , Xn〉  A ⇔ A ∈ Xn (A ∈ AMF or Xn ∈ G).

The definition of N is correct, since F (Xn) < N(Xn) for any Xn ∈ G. Obviously
< is a strict partial order, in fact a tree with the least element 〈X0〉. If d ∈ D then
d < N(d) and N(d) 6∈ D. For simplicity we write Xn = 〈X0, . . . , Xn〉 ∈ W and
〈Xn, Xn+1, . . . , Xm〉 = 〈X0, . . . , Xn, . . . , Xm〉. For every X ∈ K we put H(X) = X

and for X ∈ G we define H(X) = F (X) (note that K and G are disjoint, so this
makes sense). We claim that  defines a correct model:

We have Xn 6 ⊥, since Xn is consistent.
Xn  A → B ⇔ (A → B) ∈ Xn ⇔ A 6∈ Xn or B ∈ Xn ⇔ Xn 6

A or Xn  B by maximality and consistency of Xn.
Xn  ψN ⇔ ψN ∈ Xn ⇔ ψ ∈ N(Xn) ⇔ N(Xn)  ψ.
Suppose Xn  �ψ and Xn < 〈Xn, Xn+1, . . . , Xm〉. By a repeated applica-

tion of (i), (ii) and (iii) of the second sublemma we get H(Xn) < H(Xm) and
by definition �ψ ∈ Xn, thus �ψ ∈ H(Xn), ψ ∈ H(Xm) and ψ ∈ Xm, so that
〈Xn, Xn+1, . . . , Xm〉  ψ. For the converse suppose Xn 6 �ψ, then �ψ 6∈ H(Xn),
thus by the first sublemma there exists an Xn+1 > H(Xn) such that ψ 6∈ Xn+1.
We get Xn < 〈Xn, Xn+1〉 and 〈Xn, Xn+1〉 6 ψ.

A similar argument shows that Xn  4A iff d  A for every d ∈ D such that
Xn < d.

We have checked that W is a well-defined extended Kripke model. Moreover
〈X0〉 6 ϕ and every theorem of L1 is valid in W (as it is a member of any maximal
consistent set). However W need not be an L1-model, since the well-foundedness
condition may fail for it. We will overcome this problem by taking a suitable finite
restriction of W.

Define n(d) = N(d) for d ∈ D and n(w) = w for w ∈ W \D. Let ψ1, . . . , ψk be
the list of all a.m.f. such that �ψi is a subformula of ϕ.

We will pick functions f1,. . . , fk on W such that the following holds: if w  �ψi

then fi(w) = w, otherwise fi(w) > w is such that fi(w) 6 ψi and fi(w)  �ψi.
1 First of all, �(ϕ&ϕ′) ↔ (�ϕ&�ϕ′) by Nec and C1 applied to propositional tautologies

ϕ → (ϕ′ → ϕ&ϕ′) and ϕ&ϕ′ → ϕ, ϕ&ϕ′ → ϕ′. Then �ψ → �(�(ψ&�ψ) → (ψ&�ψ)) →
�(ψ&�ψ)→ ��ψ by C3 and C1.
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This is possible, because every w ∈ K satisfies �(�ψi → ψi) → �ψi, in other words
∼�ψi → ∼�∼(�ψi &∼ψi).

In a similar way, we let A1, . . . , A` list all g.m.f. such that4Aj is a subformula of
ϕ, and we choose functions g1,. . . , g`, so that gj(w) = w if w  4Aj , or gj(w) ∈ D,
gj(w) > w, gj(w) 6 Aj and gj(w)  4Aj . Again, we use here that the formula
4(4Aj → Aj) →4Aj (provable2 in L1) is valid in every node of K.

If h is any of the functions n, f1, . . . , fk, g1, . . . , g` then w ≤ h(w) for every w.
If h 6= n and h(w) ≤ v then h(v) = v, moreover n(n(w)) = n(w). Therefore
the closure of the set {〈X0〉} under the functions n, f1, . . . , fk, g1, . . . , g`, denoted
by W ′, is a finite set. Put D′ = D ∩ W ′ and let <′ and N ′ be the restrictions
of < and N on W ′. If A is a propositional atom (arithmetical or general) and
w ∈ W ′, define w ′ A iff w  A, and extend the definition of ′ inductively so
that W′ = 〈W ′, <′, D′, N ′,′〉 is a model.

The relation <′ is a finite tree, any finite strict partial order is converse well-
founded and d <′ N ′(d) 6∈ D′ for any d ∈ D′, therefore W′ is a finite tree-like
L1-model with rng(N ′) ∩ D′ = ∅. Moreover 〈X0〉 ∈ W ′ and 〈X0〉 6 ϕ, thus to
complete the proof of the proposition it suffices to show that w  A ⇔ w ′ A

for any w ∈ W ′ and A a subformula of ϕ, which follows by induction on the
complexity of A:

The assertion holds for atoms by definition. The induction steps for Boolean
connectives and N are straightforward as N ′ coincides with N on W ′.

If w  4A and v ∈ D′, w <′ v, then w < v and v ∈ D, thus v  A and v ′ A

by the induction hypothesis, therefore w ′ 4A. Suppose that w 6 4A. We have
A = Aj for some j = 1, . . . , `. By the definition of gj we know that w < gj(w) and
gj(w) 6 A. As W ′ is closed under gj we get w <′ gj(w) ∈ D′, thus gj(w) 6′ A and
w 6′ 4A.

The induction step for � is similar. R

Our next task is the model completeness of the second auxiliary system, L3.

Definition 2.2.5 Let W = 〈W,<,D,N,〉 be a model. We say that two elements
d, d′ ∈ D are arithmetically isomorphic, written as d ' d′, if <′′{d} = <

′′{d′},
<−1′′{d} = <−1′′{d′} and d  pi ⇔ d′  pi for every arithmetical atom pi, i.e.
d ' d′ iff d and d′ have the same successors and predecessors and they agree on
satisfaction of arithmetical atoms.

W is called an L3-model, if it is an L1-model and

∀d ∈ D ∀w > d ∃d′ ∈ D (d ' d′ &N(d′) = w).

An L1-model W is injective, provided that

∀d, d′ ∈ D (d ' d′ &N(d) = N(d′) ⇒ d = d′),

i.e. the function N is injective on any equivalence class of '.
24(4A→ A)→ �4(4A→ A)→ �(44A→ 4A)→ �(�4A→ 4A)→ �4A→ 44A by

C4, C2, C5 and C3, also 4(4A→ A)→ (44A→4A) by C2, hence 4(4A→ A)→4A.
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Definition 2.2.6 The symbol A ⊆ B abbreviates “A is a subformula of B”. Let
�ϕ be the formula ϕ& �ϕ. For any a.m.f. ϕ the symbol Uϕ denotes the formula∧

i,j

�(4(αi → βN
j ) →4(αi → �βj)),

where the αi’s are all Boolean combinations of arithmetical subformulas ψ ⊆ ϕ and
βj ’s are all Boolean combinations of all formulas ψ such that ψN ⊆ ϕ (there are
only finitely many such things modulo logical equivalence).

The symbol Rϕ denotes the formula∧
{4(�ψ → ψ); �ψ ⊆ ϕ or ψ is a Bool. comb. of some χ such that χN ⊆ ϕ}.

The formula Rϕ has nothing to do with L3, but we state the definition here
because we will need some information on it, which is conveniently proved as a part
of the following theorem.

Proposition 2.2.7 Let ϕ be an arithmetical modal formula.

(i) The following conditions are equivalent:

(a) L3 ` ϕ

(b) ϕ is valid in every L3-model

(c) ϕ is valid in every finite injective L3-model

(d) L1 ` Uϕ → ϕ

(ii) L3 ` Rϕ → ϕ iff L1 ` Rϕ & Uϕ → ϕ.

Proof:
(i-b) → (i-c) is trivial. (i-d) → (i-a) and the right-to-left implication in (ii) are
easy as L3 ` Uϕ (in fact, Uϕ is a conjunction of formulas of the shape �ψ, where
ψ is an instance of D2). In order to prove (i-a) → (i-b) it suffices to show that
the axiom D2 is valid in all L3-models. Let 〈W,<,D,N,〉 be such a model and
suppose w  4(ψ → χN), we want to derive w  4(ψ → �χ). Let d > w, d ∈ D

such that d  ψ and let u > d, we have to show u  χ. By the definition of an
L3-model there is d′ ∈ D, d ' d′ such that N(d′) = u. An easy induction shows
that isomorphic nodes agree on satisfaction of all a.m.f., not necessarily atomic,
hence d′  ψ. Moreover d′ > w (as d > w and d ' d′), thus d′  χN, which means
that u = N(d′)  χ.

The implication (i-c) → (i-d): suppose that L1 0 Uϕ → ϕ, we have to find
a finite injective L3-model in which ϕ is not valid. By the Proposition 2.2.4 there
is a finite tree-like L1-model W0 = 〈W0, <,D,N,〉 and x0 ∈W0 such that x0 6 ϕ

and x0  Uϕ, we may assume w.l.o.g. that x0 is the root of W0 (i.e. the least
element). In L1 one easily derives Uϕ → �Uϕ, which is a general property of all
formulas starting with �. Therefore Uϕ holds in every node of W0.

For any L1-model W = 〈W,<,D,N,〉 define

diff (W) = {d ∈ D; ∃w > d ∼∃d′ ∈ D (d ' d′ &N(d′) = w)},
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Diff (W) = {w ∈W ; ∃d ≥ w d ∈ diff (W)}.

Note that W is an L3-model iff Diff (W) = ∅. The model W0 is a finite injective
L1-model with the least element x0 6∈ D, Uϕ is valid in W, x0 6 ϕ and < restricted
to Diff (W0) is a tree. Therefore there exists a model W = 〈W,<,D,N,〉 with all
these properties, which has a minimal possible cardinality of Diff (W). It suffices
to show that Diff (W) = ∅.

Suppose that Diff (W) is non-empty, we will construct a model W′ with all the
required properties such that |Diff (W′)| < |Diff (W)|, which yields a contradiction.

Pick a maximal element x ∈ Diff (W). Clearly x ∈ diff (W), in particular
x ∈ D. Let y0, . . . , yk be the list of all nodes y > x such that there is no x′ ' x,
N(x′) = y. Choose pairwise distinct objects z0, . . . , zk not belonging to W . Define

W ′ = W ∪ {zi; i ≤ k},

D′ = D ∪ {zi; i ≤ k},

N ′ ⊇ N, N ′(zi) = yi, i ≤ k,

<′=< ∪{〈u, zi〉; i ≤ k, u < x} ∪ {〈zi, u〉; i ≤ k, x < u}.

x is not the least element of W , because x ∈ D. The restriction of < to Diff (W)
is a tree and Diff (W) is a downward-closed set, therefore x ∈ Diff (W) has an
immediate predecessor in <, say r (i.e. r < x and for every u < x, either u = r or
u < r). Put

α =
∧
{ψ; x  ψ,ψ ⊆ ϕ}&

∧
{∼ψ; x 6 ψ,ψ ⊆ ϕ},

βi =
∨
{∼ψ; yi  ψ,ψN ⊆ ϕ} ∨

∨
{ψ; yi 6 ψ,ψN ⊆ ϕ}

for every i ≤ k. Then x 6 α → �βi, thus r 6 4(α → �βi) and r 6 4(α → βN
i )

(because r  Uϕ). Hence there exist wi ∈ D, wi > r such that wi  α and wi 6 βN
i .

It holds then x  ψ ⇔ wi  ψ for every ψ ⊆ ϕ, and also yi  ψ ⇔ wi  ψN for
every ψN ⊆ ϕ.

We define

zi ′ p ⇔ x  p and zi ′ q ⇔ wi  q

for every arithmetical atom p and general atom q, where i ≤ k. We leave the forcing
of all atoms in the nodes of W unchanged and extend the definition of ′ to all
formulas so that W′ = 〈W ′, <′, D′, N ′,′〉 is a model.

The relation <′ is a finite strict partial order (hence it is converse well-founded)
and d < N ′(d) for every d ∈ D′, thus W′ is a finite L1-model. The least element
x0 of W is also the least element of W ′ and x0 6∈ D′.

The relation ' on elements of D is unchanged in W ′ and all new nodes zi are
arithmetically isomorphic to each other and to x. From this it follows easily that
the model W′ is injective.

We claim that Diff (W′) ⊆ Diff (W) \ {x} $ Diff (W). The set A = Diff (W) \
{x} is downward-closed, hence it suffices to show that diff (W′) ⊆ A. If u ∈
W \ Diff (W), u ∈ D′ and u <′ v, then v ∈ W , u < v and u ∈ D, thus there
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exists u′ ∈ D such that u ' u′ and N(u′) = v. This remains true in W′, therefore
u 6∈ diff (W′). If u = x or u ∈W ′ \W (i.e. u = zi for some i ≤ k) and u <′ y, then
y ∈ K and x < y. Either there exists x′ ∈ D such that x′ ' x (thus x′ ' u) and
N(x′) = y (thus N ′(x′) = y), or y = yj for some j ≤ k. But then u ' zj ∈ D′ and
N ′(zj) = y. Hence u 6∈ diff (W′).

In particular, <′ restricted to Diff (W′) is a tree.

Sublemma 1 Let A be a Boolean combination of some subformulas of ϕ, i ≤ k

and u ∈W , where either u ∈ D or A is an a.m.f. Then

zi ′ A ⇔ wi  A,

u ′ A ⇔ u  A.

Proof:
By induction on the complexity of the formula A.

If A = p is an arithmetical atom, we have zi ′ p ⇔ x  p ⇔ wi  p. The
other cases for A an atom are trivial.

The induction steps for Boolean connectives are straightforward.

Let A = ψN: if u ∈ D we have u ′ ψN ⇔ N(u) ′ ψ ⇔ N(u)  ψ ⇔ u 

ψN. Also zi ′ ψN ⇔ yi ′ ψ ⇔ yi  ψ ⇔ wi  ψN.

The induction step for 4A: we will treat at first the case u ∈W . If u ′ 4A then
u  4A due to the induction hypothesis and the relations < ⊆ <′ and D ⊆ D′.
If u 6′ 4A, there exists v >′ u such that v ∈ D′ and v 6′ A. If v ∈W it follows
that u < v, v ∈ D and v 6 A, hence u 6 4A. In the case v = zi we have u < x,
thus u ≤ r and r < wi, therefore u < wi. By the induction hypothesis wi 6 A,
thus u 6 4A, since wi ∈ D.

The remaining case is u = zi ∈ W ′ \W . We have zi ′ 4A ⇔ x ′ 4A ⇔
x  4A ⇔ wi  4A: the first equivalence is due to x ' zi, the second follows
from the previous paragraph and the third by 4A ⊆ ϕ.

The induction step for �ψ is similar. R

Using this sublemma we get immediately x0 6′ ϕ. It remains to check x0 ′ Uϕ.
Suppose that u ∈ W ′ and u ′ 4(α → βN), where α is a Boolean combination

of some ψ ⊆ ϕ and β is a Boolean combination of formulas ψ such that ψN ⊆ ϕ.
Put ũ = u for u ∈W and ũ = x otherwise. If v > ũ, v ∈ D and v  α, then v ′ α,
hence v ′ βN, thus N(v) ′ β and N(v)  β. In other words ũ  4(α → βN),
therefore ũ  4(α→ �β).

Let u <′ v ∈ D′, v ′ α. Then ṽ > ũ, ṽ ∈ D and ṽ ′ α, since v ' ṽ. Hence
ṽ  α, thus ṽ  �β. If v <′ w then ṽ < w̃, hence w̃  β, w̃ ′ β and w ′ β,
because w ' w̃. Therefore v ′ �β and u ′ 4(α→ �β).

This completes the proof of (i-c) → (i-d). We have to show yet the left-to-right
implication of (ii), which will be done by a modification of the preceding argument.
Suppose that L1 0 Rϕ & Uϕ → ϕ. By 2.2.4 there is a finite tree-like L1-model
W0 whose root satisfies Uϕ and Rϕ and does not satisfy ϕ. We pick a model W
with the minimal cardinality of Diff with all the properties as above with the extra
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condition that Rϕ is valid in all nodes of the model. Again we show that this model
has empty Diff by reductio ad absurdum. The only difference is that the newly
constructed model W′ should satisfy Rϕ, provided that W does, which is done as
follows:

Given a u ∈ D′ such that u ′ �ψ, where �ψ ⊆ ϕ or ψ is a Boolean combination
of formulas χ such that χN ⊆ ϕ, and given a v > ũ we have v ′ ψ, thus v  ψ and
ũ  �ψ. But ũ ∈ D, hence ũ  ψ, therefore ũ ′ ψ and u ′ ψ, because ũ ' u. R

Remark 2.2.8 In contrast to L1, the definition of an L3-model depends not only on
the underlying frame, but also on the satisfaction relation (which is used for the def-
inition of '). In fact, L3 is not frame-complete. It is easy to see that L3 corresponds
to the class of all L1-frames 〈W,<,D,N〉 such that ∀x∀y ∀z (x < y < z&y ∈ D ⇒
N(y) = z), i.e. every non-minimal node from D has precisely one successor. Every
such frame validates the formulas 4(�ϕ↔ ϕN), 4(�ϕ∨�∼ϕ), 4��⊥, which are
not derivable in L3.

In the case of CSRL the situation is even worse: the condition imposed to the
model will depend on the formula we want to “disvalidate” by the model. The proof
of 2.2.4 shows that any extension of L1 closed under MP, Nec and substitution is
complete w.r.t. a suitable class of models and this applies to CSRL too, but we will
need also the Finite Model Property in the proof of the arithmetical completeness
of CSRL. To see that CSRL is not complete w.r.t. a class of finite models, note that
CSRL proves 4∼�k⊥ for every k ∈ ω, thus in every finite model 〈W,<,D,N,〉
satisfying all theorems of CSRL the set D has to be empty, i.e. all such models
validate the formula 4⊥.

The system CSRL# is not complete w.r.t. any class of models (even infinite),
since it is not closed under Nec.

We postpone the definiton of the Kripke semantics and the Kripke completeness
theorem for CSRL to the next section, since we will prove it together with the
arithmetical completeness theorem. (It is possible to derive the Kripke completeness
directly by examination of the models, but it is rather inconvenient and lengthy.)

2.3 Arithmetical completeness

Lemma 2.3.1 Let ϕ be an a.m.f. and ∗ = 〈∗, ∗〉 an arithmetical realization.

(i) CSRL ` ϕ ⇒ PA ` ϕ∗,

(ii) CSRL# ` ϕ ⇒ N � ϕ∗.

Briefly, CSRL ⊆ PRLext(AST,PA) and CSRL# ⊆ PRL+
ext(AST,PA).

Proof:
By induction on the length of the derivation of ϕ. The axioms A1 and A2 and
Modus Ponens are sound since PA and AST contain the CPC. The axioms B1,
B2 and B3 translate to the assertion that the interpretation N commutes with the
propositional connectives and this is clearly provable in AST. The axioms C1, C2
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and the Necessitation Rule correspond to the Löb’s derivability conditions. C3
is a formalization of the Löb’s theorem, C4 follows from formalization of the Σ0

1-
completeness of PA. C5 says that FN is an interpretation of PA in AST, which is
formalizable in PA. Finally D1, D2 and D3 correspond to 1.3.7 and the additional
axiom S of CSRL# expresses the arithmetical soundness of AST (1.3.6). R

Definition 2.3.2 Let B be a g.m.f. For every K ∈ ω we define an a.m.f. BK by
B0 = 4B, BK+1 = 4(B ∨BK), i.e. BK = 4(B ∨4(B ∨ · · · ∨ 4(B ∨4B︸ ︷︷ ︸

K+1

) · · · )).

Lemma 2.3.3 Let ϕ be an a.m.f. and K ∈ ω. Then CSRL# ` ϕK → ϕ.

Proof:
By induction on K. If K = 0, ϕ0 → ϕ is 4ϕ → ϕ, i.e. an axiom of CSRL#.
Suppose K > 0. Then ϕK is 4(ϕ ∨ ϕK−1), thus ϕK → ϕ ∨ ϕK−1 is an axiom
and ϕK−1 → ϕ is provable by the induction hypothesis, therefore ϕK → ϕ is also
provable. R

Definition 2.3.4 Let W = 〈W,<,D,N,〉 be an L1-model, let ϕ be an a.m.f.
We say that W is a ϕ-CSRL-model, if it is an L3-model, d  �ψ → ψ for every
d ∈ D and ψ such that �ψ ⊆ ϕ, and for every d ∈ D there is a w > d such that
d  ψ ⇔ w  ψ for all ψ such that ψN ⊆ ϕ.

A node d is ϕ-reflexive if d ∈ D and for every 4A ⊆ ϕ such that d  4A and
for every d′ ∈ D, d′ ' d we have d′  A.

Let d, d′ ∈ D. We define d, d′ to be equivalent (or ϕ-equivalent), written as
d ≡ d′ (d ≡ϕ d′), if d  A ⇔ d′  A for every g.m.f. A (or every A ⊆ ϕ). The
model W is balanced if

∀d, d′ ∈ D (d ' d′ &N(d) ∈ D &N(d′) ∈ D &N(d) ' N(d′) ⇒ d ≡ d′).

The model is ϕ-nice if for every d ∈ D there is w > d, w 6∈ D such that for every
d′ ∈ D satisfying N(d′) = d there is d′′ ∈ D such that d′′ ' d′, N(d′′) = w and
d′′ ≡ϕ d

′.

Observation 2.3.5 Let W be an L3-model and ϕ an a.m.f. Then W is a ϕ-CSRL-
model iff the formula Rϕ (defined in 2.2.6) is valid in W.

Lemma 2.3.6 Let ϕ be an a.m.f. and K ∈ ω. Assume that there is a ϕ-CSRL-

model W and a ϕ-reflexive node x ∈ W such that x 6 ϕ. Then there exists

a ϕK-CSRL-model W′ and x′ ∈W ′ such that x′ 6 ϕK .

Proof:
Let W0 = 〈W0, <0, D0, N0,〉 and x0 ∈ D0 be as in the hypothesis. We may
assume w.l.o.g. that for every w ∈ W0 either w >0 x0 or w ∈ D0 and w ' x0. By
the definition of a ϕ-CSRL-model there exists x′ ' x0 such that for all ψN ⊆ ϕ

the equivalence x′  ψ ⇔ N0(x′)  ψ holds, we may assume that x0 has this
property (as x′ 6 ϕ).
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For all x ∈ W0 we pick pairwise distinct objects x̄ not belonging to W0. Then
we find for every x ∈ W0 a node x̃ ∈ D0 such that the following holds: if x >0 x0

then x̃ ' x0 and N0(x̃) = x, otherwise (i.e. if x ' x0) x̃ = x0. We define a new
model W1 by putting

W1 = W0 ∪ {x̄; x ∈W0},

D1 = D0 ∪ {x̄; x ∈W0},

<1=<0 ∪{〈x̄, y〉; x, y ∈W0},

N1 extends N0, N1(x̄) = x.

We leave the satisfaction of all formulas in nodes of W0 unchanged and define

x̄  p ⇔ x0  p,

x̄  q ⇔ x̃  q

for every arithmetical atom p, general atom q and x ∈ W0. A straightforward
induction on the complexity shows that for every A ⊆ ϕ we have

x̄  A ⇔ x̃  A.

It follows easily that W1 is a ϕ-CSRL-model and all x̄’s are ϕ-reflexive.
By repeating this construction (K + 1)-times we get a ϕ-CSRL-model WK+1

containing a sequence of nodes xK+1 < · · · < x1 < x0, xi ∈ DK+1 such that xi 6 ϕ.
Then xK+1 6 ϕK and WK+1 is a ϕK-CSRL-model, since ϕ and ϕK contain the
same subformulas of the form �ψ or ψN. R

Definition 2.3.7 K(ϕ) denotes the cardinality of the set {A; 4A ⊆ ϕ}.

Lemma 2.3.8 Let ϕ be an a.m.f. and ϕ̃ = ϕ(q1/B1, . . . , qn/Bn) a substitutional

instance of ϕ which does not contain any general atom. Suppose that there is a finite

injective ϕ̃-CSRL-model W such that ϕ̃ is not valid in W. Then there exists a finite

injective balanced ϕ-nice ϕ-CSRL-model W′ such that ϕ is not valid in W′.

If moreover W does not satisfy ϕ̃K(ϕ̃) then there is a ϕ-reflexive node x ∈ W ′

such that x 6 ϕ.

Proof:
Let W = 〈W,<,D,N,〉 be a finite injective ϕ̃-CSRL-model, x ∈ W and x 6
ϕ̃. If A is a g.m.f. define Ã = A(q1/B1, . . . , qn/Bn, qn+1/⊥, . . . , qm/⊥), where
qn+1, . . . , qm are all general atoms occurring in A, distinct from q1, . . . , qn. We
define the model W′ = 〈W,<,D,N,′〉 by putting

w ′ A ⇔ w  Ã

for every w ∈W and every formula A.
W′ is easily seen to be a finite injective L3-model. The properties of a ϕ̃-CSRL-

model together with the fact that satisfaction of any formula A in W′ is determined
by satisfaction of the general-atom-free formula Ã in W imply that W′ is a balanced
ϕ-nice ϕ-CSRL-model and clearly x 6′ ϕ.
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Put K = K(ϕ̃) and assume the extra condition x 6 ϕ̃K . This implies that there
are nodes xK > · · · > x0 > x such that xi ∈ D and xi 6 ϕ̃. If ψ,A ⊆ ϕ then W′

satisfies the formulas ψ ↔ ψ̃ and 4(A ↔ Ã). Let 4A ⊆ ϕ. Then Ã is equivalent
to a formula ∧

i<n

(
∨

j<hi

εj
iψ

j
i ∨

∨
j<gi

ζj
i χ

j
i

N
),

where εj
i and ζj

i stand for either ‘∼’ or nothing and ψj
i , χ

j
i

N
⊆ Ã. Put

Ā =
∧
i<n

(
∨

j<hi

εj
iψ

j
i ∨�(

∨
j<gi

ζj
i χ

j
i )).

Then L3 ` 4Ã↔4Ā and L3 ` 4(Ā→ Ã).
A formula 4B → B has to be valid in all but possibly one node of the linear

chain x0 < · · · < xK . There are at most K formulas Ā such that 4A ⊆ ϕ, hence
by the pigeon-hole principle there is i ≤ K such that xi 

∧
4A⊆ϕ

(4Ā → Ā). We

have xi 6′ ϕ (since xi 6 ϕ̃) and xi ∈ D. We claim that xi is a ϕ-reflexive node (in
W′): given 4A ⊆ ϕ such that xi ′ 4A and d ' xi we have xi  4Ã, xi  4Ā
and xi  Ā, thus d  Ā (as Ā is an a.m.f.), hence d  Ã and d ′ A. R

Theorem 2.3.9 Let ϕ be an arithmetical modal formula.

(i) The following are equivalent:

(a) PA ` ϕ∗ for every arithmetical realization ∗, i.e. ϕ ∈ PRLext(AST,PA)

(b) CSRL ` ϕ

(c) L3 ` Rϕ → ϕ

(d) L1 ` Rϕ & Uϕ → ϕ

(e) ϕ is valid in all ϕ-CSRL-models

(f ) ϕ is valid in all finite injective balanced ϕ-nice ϕ-CSRL-models

(ii) The following are equivalent:

(a) N � ϕ∗ for every arithmetical realization ∗, i.e. ϕ ∈ PRL+
ext(AST,PA)

(b) CSRL# ` ϕ

(c) CSRL ` ϕK(ϕ)

(d) ϕ is valid in all ϕ-reflexive nodes of all ϕ-CSRL-models

(e) ϕ is valid in all ϕ-reflexive nodes of all finite injective balanced ϕ-nice

ϕ-CSRL-models

(iii) If CSRL 0 ϕ then there exists a substitutional instance

ϕ̃ = ϕ(q1/B1, . . . , qm/Bm)

of ϕ such that ϕ̃ contains no general atoms, Bi are Boolean combinations of

some pj and pN
k and CSRL 0 ϕ̃.
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Proof:
We will consider two more statements:

(i-g) ϕ is valid in all finite injective ϕ-CSRL-models

(ii-f ) ϕ is valid in all ϕ-reflexive nodes of all finite injective ϕ-CSRL-models

The mutual equivalence of (i-c), (i-d), (i-e) and (i-g) follows from 2.2.7 and 2.3.5.
The implication (i-g) → (i-f ) is trivial, (i-c) → (i-b) is obvious as Rϕ is a conjunc-
tion of axioms of CSRL and (i-b) → (i-a) follows from 2.3.1.

The implications (ii-d) → (ii-f ) → (ii-e) are trivial, (ii-b) → (ii-a) follows from
2.3.1 and (ii-c) → (ii-b) from 2.3.3.

Assuming for the moment that (iii) is valid, we get (i-f ) → (i-b) and (ii-e) →
(ii-c) from 2.3.8 (and from (i-c) → (i-b)). Moreover assuming the implication
(i-b) → (i-e) holds, we get (ii-c) → (ii-d) from 2.3.6.

The situation is shown in the following figure. The full arrows denote so far
established implications, the dashed ones denote conditional implications depending
on the assumption written at side:
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(i-f ) (i-b)
(iii)

(i-g) (i-c)

(i-e) (i-d)
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It thus suffices to prove (i-a) → (i-g), (ii-a) → (ii-f ) and (iii).
If (i-g) fails, there is a finite injective ϕ-CSRL-model W = 〈W,≺, D,N,〉 and

x ∈ W such that x 6 ϕ. We may assume w.l.o.g. that W = {1, . . . , n}, x = 1,
1 6∈ D and 1 is the least element of W . Similarly if (ii-f ) fails we find a finite
injective ϕ-CSRL-model W such that W = {1, . . . , n}, 1 ∈ D, 1 6 ϕ, 1 is ϕ-
reflexive and for all w ∈ W either w ' 1 or 1 ≺ w. Moreover there is x ' 1 such
that ∀ψN ⊆ ϕ (x  ψ ⇔ N(x)  ψ), we may assume that x = 1. In the sequel
(#) will mark parts of the proof special to the implication (ii-a) → (ii-f ).

Put W ′ = W ∪ {0} and define 0 ≺ i for all i ∈ W . If i ∈ D, we pick î � i such
that ∀ψN ⊆ ϕ (i  ψ ⇔ î  ψ) and we find ĩ ∈ D, i ' ĩ such that N (̃i) = î.
We arrange the choice of î so that î = ĵ whenever i ' j. In the case of (#) we put
1̃ = 1.

Define E = {̃i; i ∈ D}. The symbol ` · · · will abbreviate PA ` · · · . We define
arithmetical sentences λi, i ∈W ′ by self-reference:

` λi ↔ ∃x ∀y ≥ x h(y) = i,
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where h(u) = v denotes a natural Σ0
1-formula defining in PA the graph of the

following primitive recursive function:

h(0) = 0,

h(x+ 1) =


i, if i � h(x), PrfPA(x, p∼λiq),

i, if i ∈ E, i � h(x), PrfAST(x, p∼
∨
j'i

λFN
j q),

h(x) otherwise.

(We assume that no number simultaneously codes a proof in AST and PA.)
We denote by ≈ the smallest equivalence relation on W ′ containing ' and, if

(#), also the pair 〈0, 1〉. For every i ∈W we define an arithmetical sentence κi by

κi =
∨
j≈i

λj .

For every i ∈ D we define a sentence Si of the language of AST by

Si =


κFN

i & λN
N(i), i 6∈ E,

κFN
i & (κN

i ∨ λN
N(i)), i ∈ E.

Sublemma 1 Let i, j ∈W .

(i) i ∈ D ⇒ AST ` Si → κFN
i

(ii) i ∈ D \ E ⇒ AST ` Si → κN
N(i), i ∈ E ⇒ AST ` Si → κN

i ∨ κN
N(i)

(iii) ` λ0 ∨ κ1 ∨ · · · ∨ κn

(iv) i 6≈ j ⇒ ` κi → ∼κj , i, j ∈ D, i 6= j ⇒ AST ` Si → ∼Sj

(v) i ≺ j ⇒ ` κi → ∼PrPA(p∼κjq), i ≺ j ∈ D ⇒ ` κi → ∼PrAST(p∼Sjq)

(vi) ` κi → PrPA(p
∨
j�i

κjq), i 6∈ D ⇒ ` κi → PrPA(p
∨
j�i

κjq)

(vii) i 6≈ 0 ⇒ ` κi → PrAST(p
∨

j∈D
j�i

Sjq)

(viii) 0 ∼κ1

(ix ) Assuming (#), AST `
∨

j∈D

Sj and N � κ1

Proof:

(i) and (ii) follow immediately from the definition. The function h is monotonous
and this formalizes in PA easily, yielding ` λ0 ∨ · · · ∨ λn and this implies (iii).

Part (iv): it is clear from the definition that ` λi → ∼λj for any i 6= j. If i, j ∈W ,
i 6≈ j, we have i′ 6= j′ for every i′ ≈ i and j′ ≈ j, hence ` κi → ∼κj . Assume
that i, j ∈ D, i 6= j. We distinguish two subcases. At first suppose i 6≈ j,
then AST ` κFN

i → ∼κFN
j , thus AST ` Si → ∼Sj by part (i). In the other

case, i ≈ j, we have i ' j and consequently N(i) 6= N(j) (as the model W is
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injective), and either i or j does not belong to E (because of our choice of ĩ).
We may suppose w.l.o.g. i 6∈ E. Then we have AST ` λN

N(i) → ∼(κN
j ∨ λN

N(j))
(since k ≺ N(i) for all k ≈ j), therefore also AST ` Si → ∼Sj .

Part (v): assuming i ≺ j the definition of h implies ` PrPA(p∼λjq) → ∼λi. If
i, j ∈ K, i ≺ j and i′ ≈ i, then i′ ≺ j, thus ` PrPA(p∼κjq) → PrPA(p∼λjq) →∧
i′≈i

∼λi′ → ∼κi.

One can show the same way that for any i ≺ j ∈ D,

` PrAST(p∼
∨
k'j

λFN
k q) → ∼κi.

To prove (v) it therefore suffices to check that for every i ∈ D,

` PrAST(p∼Siq) → PrAST(p∼
∨
j'i

λFN
j q).

Clearly ` PrAST(p∼Siq) → PrAST(p
∨
j'i

λFN
j → ∼λN

N(i)q), hence by 1.3.7 also

` PrAST(p∼Siq) → PrAST(p
∨
j'i

λFN
j → PrFN

PA (p∼λN(i)q)q).

But if j ' i then j ≺ N(i), thus ` PrPA(p∼λN(i)q) → ∼λj . This all together
implies

` PrAST(p∼Siq) → PrAST(p
∨
j'i

λFN
j → ∼

∨
j'i

λFN
j q)

and the desired assertion follows.

Part (vi): the function h is provably monotonous and the formula ∃xh(x) = i is
a Σ-sentence, therefore

` λi → ∃xh(x) = i→ PrPA(p∃xh(x) = iq) → PrPA(p
∨
j�i

λjq).

If i′ ≈ i and i′ � j′, there exists j ≈ j′ such that i � j. Hence ` κi →
PrPA(p

∨
j�i

κjq).

If i 6∈ E, i 6= 0, then clearly ` λi → PrPA(p∼λiq). For any i ∈ W \D we have
κi = λi and i 6∈ E, thus ` κi → PrPA(p∼κiq) and ` κi → PrPA(p

∨
j�i

κjq).

Part (vii): the definition of h implies that for any i ∈W ,

` λi → PrAST(p∼λFN
i q).

By the previous paragraph

` λi → PrAST(pλFN
i ∨

∨
j∈E
j�i

λFN
j ∨

∨
j 6∈E
j�i

(λFN
j & PrFN

PA (p∼λjq))q),

hence (using 1.3.7) ` λi → PrAST(p
∨

j∈E
j�i

λFN
i q). The formula ∃xh(x) = i is

a Σ-sentence and h is monotonous, thus AST ` λFN
i →

∨
j�i

λN
j . Consequently

` λi → PrAST(p
∨
j∈E
j�i

(λFN
j & λN

j ) ∨
∨
j∈E
j�i

∨
k�j

(λFN
j & λN

k )q).
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If k � j � i, j ∈ E, there exists j′ ' j such that N(j) = k. This together with
the definition of Sj implies ` λi → PrAST(p

∨
j∈D
j�i

Sjq). If 0 6≈ i then all i′ ≈ i have

the same successors as i, hence ` κi → PrAST(p
∨

j∈D
j�i

Sjq).

Part (viii): N � ∼λi for every i ∈ W—we have ` λi → PrAST(p∼λFN
i q) and

N � PrAST(p∼λFN
i q) → ∼λi, since AST is an arithmetically sound theory. On

the other hand ` λ0 ∨ · · · ∨ λn, thus N � λ0. But ` λ0 → ∼PrPA(p∼λ1q) →
∼PrPA(p∼κ1q), therefore N � ∼PrPA(p∼κ1q) and 0 ∼κ1.

Part (ix ): if (#) then 0 ≈ 1, thus N � κ1 (since N � λ0 by the previous paragraph).
As in the proof of the part (vii) one checks easily that AST ` λFN

0 ∨
∨

i∈E

λFN
i

and consequently

AST `
∨
i∈E

(λFN
i &λN

i )∨
∨
i∈D

(λFN
ĩ

&λN
N(i))∨ (λFN

0 &
∨
i≈0

λN
i )∨ (λFN

0 &
∨
i'1

λN
N(i)),

hence
AST `

∨
i∈E

Si ∨
∨
i∈D

Si ∨ S1 ∨
∨
i'1

Si,

in other words AST `
∨

i∈D

Si. R

We define a provability interpretation ∗ = 〈∗, ∗〉 by putting

p∗ =
∨
ip

κi,

q∗ =
∨
i∈D
iq

Si,

for every arithmetical atom p and general atom q.

Sublemma 2 Let i ∈W and ψ,A ⊆ ϕ.

(i) i  ψ ⇒ ` κi → ψ∗,

i 6 ψ ⇒ ` κi → ∼ψ∗.

(ii) i  A ⇒ AST ` Si → A∗,

i 6 A ⇒ AST ` Si → ∼A∗, provided i ∈ D.

Proof:
Proceed by induction on the complexity of the formulas ψ, A.

Let ψ = p be an atom. If i  p then ` κi → p∗ by the definition. If i 6 p and
i′ ∈ W , i′ ≈ i, then i′ 6 p, hence ` κi →

∧
jp

∼κj → ∼p∗ by (iv) of the first

Sublemma.

The case when A = q is a general atom is treated similarly.

If ψ = ⊥ we have i 6 ⊥ and ` κi → ∼⊥.

Let ψ = (ψ1 → ψ2). If i  ψ then i 6 ψ1 or i  ψ2. By the induction hypothesis
` κi → ∼ψ∗1 or ` κi → ψ∗2 , thus ` κi → (ψ∗1 → ψ∗2). If i 6 ψ then i  ψ1 and
i 6 ψ2, hence ` κi → ψ∗1 and ` κi → ∼ψ∗2 , therefore ` κi → ∼(ψ∗1 → ψ∗2).
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A similar argument applies if A = (A1 → A2).

Let ψ = �χ. If i 6 ψ, there exists j � i, j 6 χ. Then ` χ∗ → ∼κj by I.H.,
hence ` κi → ∼PrPA(p∼κjq) → ∼PrPA(pχ∗q) by (v) of the Sublemma. On the
other hand, assume i  ψ. Then j  χ for every j � i, thus `

∨
j�i

κj → χ∗. If

i 6∈ D, we get immediately ` κi → PrPA(p
∨
j�i

κjq) → PrPA(pχ∗q) by (vi) of the

Sublemma. If i ∈ D then also i  χ (since �χ ⊆ ϕ and W is a ϕ-CSRL-model),
hence `

∨
j�i

κj → χ∗. Therefore ` κi → PrPA(p
∨
j�i

κjq) → PrPA(pχ∗q) by (vi)

again.

Let ψ = 4A. If i 6 ψ, there exists j � i, j ∈ D such that j 6 A. Thus
AST ` A∗ → ∼Sj and ` κi → ∼PrAST(p∼Sjq) → ∼PrAST(pA∗q) by (v).
Let i  ψ. Assume at first i 6≈ 0. Then j  A for every j � i, j ∈ D, thus
AST `

∨
j∈D
j�i

Sj → A∗ and ` κi → PrAST(p
∨

j∈D
j�i

Sjq) → PrAST(pA∗q) by (vii).

Now assume i ≈ 0, then (#), i ' 1 and the node 1 ∈ D is ϕ-reflexive. We have
1  4A and 4A ⊆ ϕ, therefore j  A for all j ' 1, moreover j  A for all
j ∈ D, j � 1. In other words j  A for every j ∈ D. Hence AST `

∨
j∈D

Sj → A∗.

But AST `
∨

j∈D

Sj by (ix ), thus AST ` A∗ and a fortiori ` κi → PrAST(pA∗q).

Let A = ψ be an a.m.f. If i  ψ, we have ` κi → ψ∗. But AST ` Si → κFN
i by

(i), hence AST ` Si → ψ∗FN. The case i 6 ψ is similar.

Let A = ψN. If i  ψN and i 6∈ E, we have ` κN(i) → ψ∗ and AST ` Si → κN
N(i)

by (ii), hence AST ` Si → ψ∗N. If i ∈ E then also i  ψ since ψN ⊆ ϕ,
therefore ` κi ∨ κN(i) → ψ∗. Moreover AST ` Si → κN

i ∨ κN
N(i) by (ii), hence

AST ` Si → ψ∗N. The situation when i 6 ψN is analogous again. R

We have 1 6 ϕ, thus PA ` κ1 → ∼ϕ∗. But PA 0 ∼κ1, therefore PA 0 ϕ∗. In the
case of (#) we have N � κ1, thus N 2 ϕ∗. This completes the proof of (i-a) → (i-g)
and (ii-a) → (ii-f ).

We have to prove the part (iii) yet. Assuming CSRL 0 ϕ there is a finite
injective ϕ-CSRL-countermodel to ϕ. By the previous part of the proof we find an
arithmetical realization ∗ such that PA 0 ϕ∗. Moreover the ∗ we have constructed
assigns to every general atom a Boolean combination of formulas of the form ψFN

and χN, where ψ and χ are arithmetical sentences. Thus there is a substitutional
instance ϕ̃ of ϕ not containing general atoms and an arithmetical realization # such
that PA 0 ϕ̃#. This implies CSRL 0 ϕ̃ by (i-b) → (i-a). R

Proposition 2.3.10 The systems L1, L3, CSRL and CSRL# are decidable.

Proof:
All these logics are Σ0

1 as they are recursively axiomatized. Moreover each of them
has a suitable Kripke semantics enjoying the Finite Model Property, hence they are
Π0

1 and consequently they are recursive, by the Post theorem. R

Remark 2.3.11 This statement may be a bit improved. All the systems above
contain in a suitable sense the usual unimodal provability logic GL ([Sol76]) which

36



is known to be PSPACE-complete, this gives an estimate from below to the com-
plexity of these logics. It is possible to characterize L1 by a reasonable sequent
calculus enjoying the Cut Elimination, which gives a decision procedure for L1

working in polynomial space, thus L1 is PSPACE-complete too. It follows easily
from 2.2.7 and 2.3.9 that CSRL and CSRL# are linear–time reducible to each other,
CSRL and CSRL# are exponential–time reducible to both L3 and L1 and finally
L3 is exponential–time reducible to L1, in particular CSRL, CSRL# and L3 are de-
cidable in exponential space (more precisely they are in SPACE(2O(n))). It is an
open problem if any of these three systems is in PSPACE or EXP . (I conjecture
a negative answer, at least for PSPACE.)

Remark 2.3.12 The arithmetical completeness of CSRL and the Gödel’s Diagonal
Lemma imply that CSRL is closed under the Diagonalization Rules (DiR)

�(p↔ ψ(p)) → ϕ / ϕ,

4(q ↔ B(q)) → ϕ / ϕ,

where the atom p (resp. q) does not occur in ϕ and every its occurence in ψ (resp.
B) is in the scope of a box (resp. triangle). This can be alternatively established by
a purely syntactic argument—as in the case of GL, the logic L1 has unique definable
fixpoints: there is an a.m.f. χ (resp. a g.m.f. C) not containing p (resp. q) such that
L1 proves

�(p↔ ψ(p)) ↔ �(p↔ χ),

4(q ↔ B(q)) ↔4(q ↔ C).

Example 2.3.13 Let ϕ be an arithmetical sentence. We know that FN and N are
models of arithmetic in AST, therefore we may ask what relation there is between
ϕFN and ϕN. We will try to find out, whether

• AST proves ϕFN ↔ ϕN,

• AST proves ϕFN → ϕN.

There is a simple answer to the first question: it holds if and only if the formula ϕ
is decidable in PA. Clearly, if PA ` ϕ or PA ` ∼ϕ then (provably in AST) either
ϕ or ∼ϕ holds simultaneously in FN and N, since both are models of PA. On the
other hand, suppose that AST ` ϕFN ↔ ϕN. Using twice the axiom D2 we see
that CSRL proves

4(p↔ pN) →4(p→ �p) &4(∼p→ �∼p),

hence also
4(p↔ pN) →4(�p ∨�∼p).

Therefore 4(p↔ pN) → (�p ∨�∼p) is a valid principle of PRL+
ext(AST,PA), i.e.

either ϕ or ∼ϕ is provable in PA.
The second question is more complicated. The answer is positive if ϕ is a Σ0

1-
sentence, because N is an end-extension of FN. The same holds for formulas logi-
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cally equivalent to a Σ0
1-sentence, and this suggests that ϕ could be Σ0

1 in a stronger
theory, say PA or AST. Consider the following statements:

(i) PA ` ϕ↔ σ for some σ ∈ Σ0
1,

(ii) AST ` ϕFN → ϕN,

(iii) AST ` (ϕ↔ σ)FN for some σ ∈ Σ0
1.

We will show that (i) → (ii) → (iii), but neither of these two implications can be
reversed. Note first that (ii) is equivalent to

(ii ′) AST ` ϕFN ↔ PrFN
PA (pϕq),

because CSRL ` 4(p→ pN) ↔ 4(p↔ �p) (use D2 and D3 from left to right and
D1 from right to left). Moreover (iii) is equivalent to

(iii ′) AST ` ϕFN ↔ PrFN
PA (pψq) for some arithmetical sentence ψ.

The implication (iii ′) → (iii) is trivial as PrPA(pψq) is always Σ0
1. On the other

hand if σ ∈ Σ0
1 then AST ` σFN ↔ PrFN

PA (pσq) by provable Σ0
1-completeness and

D3, hence AST ` (ϕ↔ σ)FN implies AST ` ϕFN ↔ PrFN
PA (pσq).

If PA ` ϕ ↔ σ, σ ∈ Σ0
1, then PA ` ϕ → PrPA(pϕq) by provable Σ0

1-
completeness, hence (i) → (ii ′). The implication (ii ′) → (iii ′) is trivial, thus
(i) → (ii) and (ii) → (iii).

In order to demonstrate that (iii) does not in general imply (ii), or equivalently
(iii ′) 6→ (ii), it suffices to show that the formula α = 4(p↔ �p′) →4(p→ pN) is
not a valid principle of PRL+

ext(AST,PA), i.e. CSRL# 0 α. Similarly if (ii) → (i)
then (ii) would imply PA ` ϕ→ PrPA(pϕq), hence we need to show that CSRL# 0
β, where β is the formula 4(p→ pN) → �(p→ �p).

The following figure shows a countermodel to β.
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∼p

p, ∼�p

∼p, ∼�p, .4(p→ pN), ∼�(p→ �p)

This represents a model W = 〈W,<,D,N,〉 as follows: bullets denote nodes of
W , ovals embrace '-equivalence classes of nodes from D, full arrows make up <,
and dashed arrows the function N . The graph of < is simplified—we omit arrows
which follow by transitivity, and we treat all nodes in an oval as one, because
arithmetically isomorphic nodes have the same successors and predecessors. The
forcing of selected formulas, recorded at the side of the drawing, applies to the
nearest node only, however all nodes of an oval force the same arithmetical formulas.
Now, using the relevant definitions, it is easy to see that W is a β-CSRL-model, its
bottom nodes are β-reflexive and do not force β, hence CSRL# 0 β. (In fact, this
model is also injective, balanced and β-nice.)
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Here is a counterexample for α.
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p, p′, �p′, .4(p↔ �p′), ∼4(p→ pN)

p, p′, �p′; ∼pNpN

∼p, p′p, p′

Again, it is an injective, balanced and α-nice α-CSRL-model and its bottom nodes,
forcing ∼α, are α-reflexive.

Remark 2.3.14 CSRL has some interesting subsystems obtained by restricting
its language. Namely, we can form bimodal provability logics for AST and PA
comparable to the bimodal logics for other pairs of theories. This is important as
only a small number of them are understood so far, see [Car86], [Bek94], [Bek96],
[JJ98].

Usual bimodal provability logics with a single type of atoms and formulas require
both theories involved to have the same language, however we study here PA,
having the arithmetical language, and AST, which has the set-theoretical language
permitting (at least) two canonical interpretations of the language of PA. We resolve
this problem by considering two “arithmetics”, ASTFN = {ϕ; AST ` ϕFN} and
ASTN = {ϕ; AST ` ϕN}. In the fragment of CSRL without general atoms the
provability predicates for PA and ASTFN are represented by the modal operators
� and 4, the provability predicate for ASTN may be represented by an additional
modality 5which is introduced by putting 5ϕ = 4ϕN.

Note that AST is a conservative extension of PA, i.e. ASTN = PA (4ψN →
4�ψ is an instance of D2, hence CSRL# proves 5ψ → �ψ), but this fact is not
formalizable in PA (or AST) itself (one can show that CSRL# proves 4(5ψ →
�ψ) ↔ �ψ, thus AST can establish the conservativity just for sentences which are
in fact theorems of PA). In other words the provability predicate of ASTN acts as
an alternative numeration of PA which is not provably equivalent to the standard
one. However the inclusions PA ⊆ ASTN ⊆ ASTFN are provable in PA.

It is possible to form three pairs of theories from PA, ASTFN and ASTN, thus
three bimodal provability logics arise here.

The logic PRL(PA,ASTFN) is well-known. It is obtained from the minimal
bimodal provability logic for extension of theories, CSM (see [Smo85]; it is given by
axioms A1, C1–C5, MP and Nec), by adding the axiom schema

ER) 4(�ϕ→ ϕ).

(ER stands for “essentially reflexive”. Note that in our notation ER=D3.) Due
to Carlson [Car86], this is true for every (locally) essentially reflexive pair of Σ0

1-
sound theories extending I∆0 + EXP , the pair PA, ASTFN obviously meets this
requirement.
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The logic PRL(PA,ASTN), with � and 5 as primitive operators, is axiomati-
zable by CSM (with 5 instead of 4) plus the axiom schema

Q) 5ϕ↔5�ϕ.

As in the case of CSM+(ER), this logic is maximal: PRL(T, S) = CSM + (Q)
whenever PRL(T, S) ⊇ CSM+(Q), the theories T and S are Σ0

1-sound and contain
I∆0 + EXP . (Moreover under these requirements the theories T and S actually
coincide, but not provably so. We have already mentioned that PA and ASTN

have this property.)
The logic PRL(ASTN,ASTFN) is axiomatizable by CSM (with 5 in the place

of �) and the schema

Σ-C) 4σ →5σ,

where σ is a disjunction of formulas starting with 5 or 4, including the empty
disjunction ⊥. (Σ-C stands for “Σ0

1-conservative”.) This logic is not maximal, it
is properly included in the trivial provability logic containing the axiom 4ϕ↔5ϕ
or in the Beklemishev’s system CSM+(B1-Cons) (this axiom looks like Σ-C but
applies to all Boolean combinations of formulas starting with5 or 4, see [Bek96]).

It is also possible to form a trimodal provability logic PRL(PA,ASTN,ASTFN)
with all the three operators �, 5, 4. It turns out that 5 is definable from the
remaining modalities by

5ϕ↔4�ϕ,

and it is easy to see that this schema together with CSM+(ER) axiomatizes the
logic (because of the arithmetical completeness of CSM+(ER)).

The absolute (true) provability logics PRL+(PA,ASTFN), PRL+(PA,ASTN),
PRL+(ASTN, ASTFN) and PRL+(PA,ASTN,ASTFN) are axiomatized by the
soundness schema

S) 4ϕ→ ϕ

(or 5ϕ → ϕ in the case of PRL+(PA,ASTN)) over the set of all theorems of the
corresponding PRL with Modus Ponens as the sole rule of inference.

Remark 2.3.15 The system L1 satisfies the Craig’s interpolation property. (This
may be demonstrated e.g. by an easy induction on the length of a cut-free proof in
the above mentioned sequent calculus.) If we restrict ourselves to formulas without
general atoms, then systems L3, CSRL and CSRL# have interpolation too, but this
is no longer true when we drop this restriction. There is no logic between L3 and
CSRL# with the interpolation property, indeed the following theorem of L3,

4(q ↔ p1) → (4(q ↔ pN
2 ) →4(�p2 ∨�∼p2)),

does not have an interpolant in CSRL#. (This was established by a model-theoretic
argument.)
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